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Symmetry Protected Topological Phases

1 Introduction

In this lecture note, I will give a brief introduction to symmetry protected topological (SPT) phases
in 1D, 2D, and 3D, through examples and concrete models.

Symmetry protected topological phases are gapped phases with certain global symmetry (time
reversal, charge conjugation, discrete Zy symmetry, spatial symmetry etc.). The ground state does
not spontaneously break the symmetry and is unique on closed manifolds. On an open manifold
on the other hand, the system has nontrivial edge modes (degenerate or gapless) such that there
cannot be a unique gapped ground state.

The discovery of topological insulators and topological superconductors was a major breakthrough
in the study of symmetry protected topological phases. Later, it was realized that such phenomena
is not restricted to free fermion systems, but can be found in general interacting systems as well. A
systematic study of interacting SP'T phases followed, although the simplest interacting SPT model,
the Haldane chain, has been known since the 1980s.

In this note, we introduce SPT phases following the historical path in the following steps:

1. Haldane phase in 1D

2. Topological insulator in 2D

3. Symmetry protected topological phase with Zs symmetry in 2D interacting bosonic systems
4. Duality between 2D SPT and gauge theory

5. Brief survey of SPT phases in various dimensions

2 Haldane phase in 1D

The spin 1 chain with anti-ferromagnetic Heisenberg interaction provides the first and simplest
example of symmetry protected topological order. Consider the Hamiltonian
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This Hamiltonian has a rich symmetry, including spin rotation and time reversal (S — —85).

What is the ground state like? For classical spin, anti-ferromagnetic interaction leads to Neel
order, with spins ordered as T)1J... In 1D quantum chains, long range order cannot survive and
usually gets reduced to power law decaying correlation. This is what happens in anti-ferromagnetic
Heisenberg spin 1/2 chain, which is known to be gapless. For the spin 1 chain, it was thought to
be gapless as well until Haldane pointed that it should actually be gapped[9]. Moreover, as we are
going to see below, it has symmetry protected topological order!

The Heisenberg model is very hard to solve and the existence of a gap remained a controversy
for quite some time. On the other hand, exact ground state can be found for a slightly modified
Hamiltonian proposed by Affleck, Kennedy, Lieb and Tasaki (AKLT) [1].

H = Z Si - Sis1 + % (gz : §i+1)2 (3)
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By adding the quadratic interaction % (Si . Si+1> , the Hamiltonian term becomes the projection

to the total spin 2 sector for the two spin 1’s at site ¢ and 7 + 1. That is to say, the total spin 2
sector has a higher energy, while the total spin 1 and total spin 0 sector has lower energy. Energy
would be minimized if every pair of nearest neighbor spins satisfy this condition, i.e. if every pair
of them has total spin 0 or 1 but not 2.
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Figure 1: The valence bond ground state of the AKLT model. The spin 1 on each lattice site can
be decomposed into two spin 1/2’s which form singlets between nearest neighbor pairs. At the
two ends of an open chain, there are two isolated spin 1/2’s giving rise to a four fold ground state
degeneracy.

This condition can indeed be satisfied. As shown in Fig.1, consider each spin 1 (grey oval) as
composed of two spin 1/2’s (yellow circle). Put the right spin 1/2 on site 7 and the left spin 1/2 on
site ¢ 4+ 1 into a singlet state | 1)) — | {1). Now among the four spin 1/2’s on site i and i + 1, two
of them has total spin 0, therefore the total spin of the four can only be either 0 or 1. In this way
we have found the ground state of Eq. 3. The full wave function can be written as
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where P} = [1)(140 |+ | — 1) (JiL | + %|O> ((M4L | + (i1t |) is the projection from two spin 1/2’s
back to the spin 1 basis.

This wave function is called a ‘Valence Bond Solid’. In 1, it was shown that this wave function has
a finite correlation length. That is

Warrr|0i0; |V arrr) — (Warrr|Oilbaxrr) (Wakrr|O;bakrr) ~ e i/ (5)

where ¢ is the correlation length. Moreover, the excitations on top of this ground state wave
function consist of flipping the singlets into triplets and cost finite energy. Therefore, the ground
state is gapped and is very different from the spin 1/2 case.



From this valence bond structure of the wave function, it is easy to see the nontrivial SPT order.
On a closed ring with periodic boundary condition, all the spin 1/2’s are paired up and the ground

state is unique. It is invariant under both spin rotation (][], ewb:i) and time reversal ([, e/ K,
where K is complex conjugation). There is no spontaneous symmetry breaking, yet the unique
gapped ground state has a nontrivial order.

To see this, notice that on an open chain, the spin 1/2’s at the two ends of the chain are far away
from each other and hence not coupled. They can point in any direction without affecting the
energy (in the thermodynamic limit). Therefore, the ground state is 4 fold degenerate, with each
spin 1/2 contributing 2 fold degeneracy. If spin rotation or time reversal symmetry is broken by
adding, e.g., a magnetic field, the edge spin is polarized and the degeneracy is lifted. If either spin
rotation or time reversal is preserved, the degeneracy is always robust and is a signature of the
symmetry protected topological order in the AKLT model.

Such a statement holds not only for the AKLT mode, but for all models in the same phase (sup-
posedly including the Heiserberg model Eq. 1). If we vary the model within the phase, the edge
state might change. For example, it might gets wider and changes from a spin 1/2 to a spin 3/2
by involving the neighboring spin 1. However, as long as it is a half integer spin, it always has a
nontrivial degeneracy, indicating the nontrivial SPT order.

This is related to a special property of the half integer spins as compared to integer spins under
spin rotation or time reversal symmetry. A half integer spin transforms under 27 spin rotation as
27" — _1 while an integer spin transforms under 27 rotation as €’?™" = 1. Therefore, these two
cases cannot be smoothly connected. In particular, a half integer spin edge state cannot become a
zero spin edge state which has no degeneracy. On the other hand, a integer spin can be connected
to spin 0, hence removing the degeneracy.

Similarly under time reversal symmetry, a half integer spin transforms as T2 = ™" Ke'™' K = —1
while an integer spin transforms as T2 = €'™* Ke'™" K = 1. Therefore integers spins and half
integer spins are fundamentally different under time reversal symmetry. And the edge state cannot
change from one to another without a phase transition.

Spin 1/2 under spin rotation and time reversal symmetry provides a prototypical example of a
projective representation of symmetry. In general, for a symmetry group G, a usual representation
consists of matrices M(g), g € G, which satisfy

M(g1)M(g2) = M(g192) (6)

A projective representation consists of matrices M(g),g € G which satisfy

M(g1)M(g2) = w(g1, g2) M (9192) (7)

for some phase factor w(gi,g2) # 1. The w’s have to satisfy

w(g1, 92)w(g192, 93) = w* (g2, 93)w (91, 9293) (8)

where s; = 1 if g; is unitary symmetry, s; = —1 if g; is anti-unitary (involves time reversal). On
the other hand, one can redefine the phase factor of M(g) by a(g). Therefore, any two sets of w’s
related by

a(g1)a’ (g2)

— (9)

@(g1,92) = w(g1,92) a(g192)



are considered equivalent. Eq. 8 and 9 lead to a classification of projective representations for
symmetry group G. In particular, for spin rotation G = SO(3), there are two classes and for time
reversal there are two classes. Spin 1/2 corresponds to the nontrivial class in both cases.

This discussion of projective representation is important for the study of SPT phases because it
has been shown[21, 26, 5, 24] that there is a one to one correspondence between one dimensional
bosonic SPT phases with symmetry G and equivalence class of projective representations of group

G.

3 'Topological insulator in 2D

While in 1D, SPT phases were first discovered in spin chains, in 2D they were discovered in a very
different system — electronic insulators. We are going to introduce the idea of topological insulator
in 2D[14, 15, 17] in this section and discuss its relation to the Haldane chain.
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Figure 2: Left: Haldane model (of hopping electrons) on a honeycomb lattice. Middle: Edge mode
and Hall conductance of the Haldane model. Right: Stacking two copies of the Haldane model, one
with spin up and Chern number 1 and one with spin down and Chern number —1, gives rise to the
topological insulator.

To introduce topological insulator, we are going to start from another Haldane model. Consider a
2D honeycomb lattice as shown in Fig.2 where each lattice site contains one electron orbit. The
electrons can hop from one site to another. If the electrons only hop between nearest neighbor sites
with real hopping coefficient, the band structure is gapless. If next nearest neighbor hopping is
added with a complex phase factor ¢, as shown in Fig.2, time reversal symmetry is broken and a

gap opens up.

The band structure that results has a nontrivial Chern number (¢ = 1) and because of that a
nontrivial edge state. That is, on a closed manifold, the band is completely gapped but it becomes
gapless if the manifold has a boundary and the gapless modes live near the edge. On a strip
geometry, there are left moving gapless modes ¥ near the lower edge of the system and right
moving gapless modes Wg near the upper edge of the system. The low energy theory of the two
edges can be described as

H = ok(Wh, Wy — 0l Upy) (10)

The edge state gives rise to a quantized Hall conductance o, = €?/h. If ¢ goes to —¢, the Chern
number gets a minus sign and the Hall conductance also gets a minus sign.

Now consider two species of electrons, one with spin up 1, one with spin down |. The electrons



hop on the honeycomb lattice such that the up spins hop with a phase factor of ¢ and the down
spins hop with a phase factor of —¢. Spin is preserved during the hopping process. Therefore, the
system effectively consists of two layers — a spin up layer and a spin down layer, one with ¢ = 1 and
04y = €*/h and one with ¢ = —1 and oy, = —e?/h, as shown in Fig.2. The fact that the hopping
phase factor is spin dependent comes from the spin orbital coupling of the electron.

There are then two gapless modes near the edge. For example, along the upper edge, there is a
right moving mode of spin up electrons Vg and a left moving mode of spin down electrons Wy, .
The low energy effective Hamiltonian along the upper edge reads

Hy = ok(¥} [ Wpp — Uhy Urpp) (11)

This is the so called helical edge mode of topological insulator.

When both the right moving and left moving modes are present near one edge, it is possible to
induce tunneling between the two modes by adding terms like

m (‘I’TLM‘I’RM + ‘I’EM‘I’LM) (12)

The energy of the edge modes becomes €(k) = ++/(vk)? + m? and a gap opens.

However, if time reversal symmetry is preserved, then this term is not allowed. Because under the
time reversal transformation

Vpik = Yk Ve = —Vrig (13)

The tunneling term obtains a minus sign. Therefore, the edge state remains gapless when time
reversal symmetry is preserved.

In fact, there is another way to open up a gap on the edge, by inducing superconductivity. If
pairing terms like

A (Wl + Uarkr) (14)

are added to the edge, this again opens up a gap. While this term is time reversal invariant, it
violates charge conservation symmetry. Therefore, the gapless-ness of the edge state is protected
by both the charge conservation and the time reversal symmetry. If either is broken, then the edge
can be gapped.

This is the basic story of topological insulator in 2D. It looks very different from the Haldane chain
model we discussed in the previous section. One is a free fermion electronic insulator while the
other is an interacting spin chain. However, if we think of their property in a more general sense,
they are closely related. Let’s compare them in the following table.

Comparison Haldane Chain Topological Insulator
Gap in the bulk v’ v’
No fractional excitation in the bulk v’ v’
No spontaneous symmetry v’ v’
breaking in the bulk
Gapless / degenerate edge spin 1/2 helical edge
Edge state protected by symmetry | spin rotation or time reversal | charge conservation and time reversal

Therefore, in this sense, Haldane chain and topological insulator both have symmetry protected
topological order.



4 7, SPT in 2D

Are there symmetry protected topological phases in interacting spin models of two and higher
dimensions? In this section, we introduce the CZX model of interacting spins which has nontrivial
SPT order protected by on-site Zs symmetry. Discussion in this section follows that in Ref.[5].
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Figure 3: CZX model (a) each site (circle) contains four spins (dots) and the spins in the
same plaquette (square) are entangled. (b) on-site Zs symmetry is generated by Uczx =
X1 XoX3X4CZ19CZ93CZ34CZy1 (c) a local term in the Hamiltonian, which is a tensor product
of one X4 term and four P, terms as defined in the main text.

Consider a square lattice with four two-level spins per site, as shown in Fig. 3(a) where sites are
represented by circles and spins are represented by dots. We denote the two levels as |0) and |1).
The system has an on-site Zo symmetry as given in Fig. 3(b). It is generated by

Uczx = UxUcz (15)

where
Ux =X1 X @ X330 Xy (16)

X; is Pauli X operator on the ith spin and
Ucz = CZ12C Z93C Z34C Zyy (17)
where C'Z is the controlled-Z operator on two spins defined as
CZ = 100){00] + [01)(01]| + [10)(10] — |11)(11] (18)

As defined, C'Z does nothing if at least one of the spins is in state |0) and it adds a minus sign
if both spins are in state |1). Different C'Z operators overlap with each other. But because they
commute, Ucyz is well defined. Note that Ugz cannot be decomposed into separate operations on
the four spins and the same is true for Uozx. Ux and Ugz both square to I and they commute
with each other. Therefore, Uozx generates a Zs group.

The Hamiltonian of the system is defined as a sum of local terms around each plaquette. Plaquettes
are represented by squares in Fig. 3. H = ) H),, where the term around the ith plaquette H,,



acts not only on the four spins in the plaquette but also on the eight spins in the four neighboring
half plaquettes as shown in Fig. 3(c)

Hy, =-X,®Py@Pi®@P,o Py (19)
where X, acts on the four spins in the middle plaquette as
X4 =10000)(1111] + |1111)(0000| (20)
and P» acts on the two spins in every neighboring half plaquette as
P, = |00)(00| + [11)(11| (21)

o PQd, PQZ, P acts on the up, down, left and right neighboring half plaquettes respectively. For
the remaining four spins at the corner, Hj, acts as identity on them. The P, factors ensure that
each term in the Hamiltonian satisfies the on-site Zy symmetry defined before.

All the local terms in the Hamiltonian commute with each other, therefore it is easy to solve for
the ground state. If the system is defined on a closed surface, it has a unique ground state which
is gapped. In the ground state, every four spins around a plaquette are entangled in the state

[p,) = [0000) + [1111) (22)

and the total wavefunction is a product of all plaquette wavefunction. If we allow any local unitary
transformation, it is easy to see that the ground state can be disentangled into a product state,
just by disentangling each plaquette separately into individual spin states. Therefore, the ground
state is short range entangled. However, no matter what local unitary transformations we apply to
disentangle the plaquettes, they necessarily violate the on-site symmetry and in fact, the plaquettes
cannot be disentangled if the Z5 symmetry is preserved, due to the nontrivial SPT order of this
model which we show below.

First let’s check that this ground state is indeed invariant under the on-site Z5 symmetry. Obviously
this state is invariant under Ux applied to every site. It is also invariant under Ucz applied to
every site. To see this note that between every two neighboring plaquettes, C'Z is applied twice,
at the two ends of the link along which they meet. Because the spins within each plaquette are
perfectly correlated (they are all |0) or all |1)), the effect of the two C'Z’s cancel each other, leaving
the total state invariant.

Therefore, we have introduced a 2D model with on-site Z5 symmetry whose ground state does not
break the symmetry and is short-range entangled. We can add small perturbation to the system
which satisfies the symmetry and the system is going to remain gapped and the ground state short
range entangled and symmetric. It seems that the system is quite trivial and boring. However, we
are going to show that surprising things happen if the system has a boundary and because of these
special features the system cannot be smoothly connected to a trivial phase as long as global Z5
symmetry is preserved.

The non-trivialness of this model shows up on the boundary. Suppose that we take a simply
connected disk from the lattice, as shown in Fig.4(a).

The reduced density matrix of spins in this region is invariant under on-site symmetry in this
region. The reduced density matrix is a tensor product of individual terms on each full plaquette,
half plaquette and corner of plaquette respectively. On a full plaquette

ps = (/0000) + |1111))({0000| + (1111|) (23)
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Figure 4: (a)CZX model on a disk with boundary (b) boundary effective degrees of freedom form a
1D chain which cannot have a short range entangled symmetric state (c) two boundaries together
can have a short range entangled symmetric state which is a product of entangled pairs between
effective spins connected by a dashed line.

On a half plaquette
p2 = [00)(00] + [11)(11] (24)

On a corner of a plaquette
p1 = [0)(0] + [1)(1] (25)

The state of spins on the plaquettes totally inside this region is completely fixed. But on the
boundary there are free degrees of freedom. However, only part of the total Hilbert space of the
spins on the boundary is free. In particular, two spins in a half plaquette on the boundary are
constrained to the two-dimensional subspace [00)(00| 4 [11)(11] and form an effective spin degree
of freedom if we map [00) to |0) and |11) to |1).

In Fig. 4(b), we show the effective degrees of freedom on the boundary as diamonds on a line.
Projecting the total symmetry operation on the disk to the support space of the reduced density
matrix, we find that the effective symmetry operation on the boundary effective spins is Uczx =
HZJ\L 1 X; HZJ\L 1 CTZi,iH, with Pauli X on each effect spin and C'Z operation between neighboring
effective spins. The boundary is periodic and cZ N,N+1 acts on effective spin N and 1. This
operator generates a Zo symmetry group.

This is a very special symmetry on a 1D system. First it is not an on-site symmetry. In fact, no
matter how we locally group sites and take projections, the symmetry operations are not going to
break down into an on-site form. Moreover, no matter what interactions we add to the boundary,
as long as it preserves the symmetry, the boundary cannot have a gapped symmetric ground state.
To see this, we are going to consider some simple cases.

The simplest interaction term preserving this symmetry is Z;Z; 1. This is an Ising interaction term
and its ground state spontaneously breaks the Zs symmetry. In the transverse Ising model, the
system goes to a symmetric phase if magnetic field in the x direction is increased. However, X;
breaks the Zs symmetry UC zx on the boundary and therefore cannot be added to the Hamiltonian.
One can instead symmetrize the term and obtain X; + Z;_1X;Z;11. If one tries to solve this
Hamiltonian, one would find that it is gapless. In particular, the gapless edge state can be described



as a free boson model with Lagrangian

1
L= Eamd)latd)Q + 02 20: 1 (26)
where ¢ and ¢9 are 27 periodic scalar fields. The global Zs symmetry acts effectively as

¢1 = pr+ T, o — P2+ (27)

Due to the nontrivial symmetry action on both ¢; and ¢s, usual gapping terms for this boson theory
cos(¢1) and cos(¢y) cannot be added and the edge state remains gapless as long as symmetry is
not broken.

The special property on the boundary only shows up when there is an isolated single boundary. If
we put two such boundaries together and allow interactions between them, everything is back to
normal. As shown in Fig.4(c), if we have two boundaries together, there is indeed a short range
entangled symmetric state on the two boundaries. The state is a product of entangled pairs of
effective spins connected by a dashed line. The entangled pair can be chosen as |00) + |11). In
contrast to the single boundary case, we can locally project the two effective spins connected by
a dashed line to the subspace |00)(00| + [11)(11| and on this subspace, the symmetry acts in an
on-site fashion.

This result should be expected because if we have two pieces of sheet with boundary and glue them
back into a surface without boundary, we should have the original short range entangled 2D state
back. Indeed if we map the effective spins back to the original degrees of freedom |0) — |00) and
|T) — |11), we see that the short range entangled state between two boundaries is just the a chain
of plaquettes |0000) + [1111) in the original state.

This model serves as an example of non-trivial SPT order in 2D short range entangled states that
only needs to be protected by on-site symmetry. In the above discussion, we demonstrated the
nontrivial-ness of the edge state by looking at particular realizations of the edge Hamiltonian. In
[5], we prove, using the Matrix Product University Operator formalism, that the edge cannot be in
a short range entangled state without breaking symmetry.

5 Duality between 2D SPT and gauge theory

Besides looking at the edge, a powerful way to detect SPT order with unitary symmetries in two
and higher dimensions is to map them to the corresponding gauge theories. In particular, the
duality transformations between Zs SPT phases in 2D and Zs gauge theories in 2D can be used
to distinguish the SPT phases from the braiding statistics of the gauge fluxes. In this section, we
are going to explain this connection using a different lattice realization of Zs SPT order in 2D.
Discussion in this section follows that in [18].

Consider first the Ising symmetric phase with one spin 1/2 per each plaquette of the honeycomb
lattice, as shown in Fig.5 (a). The Hamiltonian takes the simple form

H'=-> o0& (28)

and the ground state is simply a product of % (| 1) + 1)) on each plaquette. This Hamiltonian is
invariant under the global Zy symmetry of [[, oF. If we think of the | 1) state as one Z3 domain



Figure 5: (a) Zs symmetric model with one o spin per plaquette on the honeycomb lattice repre-
senting the Zs domains. (b) String operator for creating gauge charge and gauge flux in HS. (c)
String operator for creating gauge charge and gauge flux in H, gl.

and the | |) state as the opposite domain, then the ground state is an equal weight superposition
over all domain configurations.

W% =>_1D) (29)
D
where D labels domain configurations.

A duality transformation maps this Zo symmetric phase to the Zs gauge theory. Introduce degree
of freedom 7 on the edges of the honeycomb lattice. The domain degrees of freedom ¢ can be
mapped to the domain wall degrees of freedom 7 by requiring that

Tab = Ta% (30)

where a, b label neighboring plaquettes. Because of this mapping, the 7 spins naturally satisfy the
constraint
T;le;ZcTcZa =1 (31)

The o term, which flips the domain in each plaquette, is now mapped to [[, 7% where the product
is over all neighboring plaquettes b of plaquette a. Combining this term together with the constraint
term, we get the Hamiltonian for the Z5 gauge theory

Hy==> [1=-> 11~ (32)

v ecv p ecp

where the first sum is over all vertices v and each terms involves the product over all edges e
terminating at the vertex v, the second sum is over all plaquettes p and each term involves the
product over all edges e bounding the plaquette p. The ground state is an equal weight superposition
of all domain wall configurations.

0
W% =>_10) (33)
C
where C' labels domain configurations.
While there seems to be a straight forward mapping between domain configurations and domain
wall configurations, they are fundamentally different which shows up on manifolds with nontriv-

ial topology, like a torus. On a torus, every domain configuration can be mapped to a domain
wall configuration, but not every domain wall configuration can be mapped back to domains. In
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particular, there can be nontrivial loops along the two big circles of the torus in the domain wall
configuration, which does not bound any region on the torus, hence does not map to any domain
configuration. As the nontrivial loops cannot be detected from local energetics, they contribute to
ground state degeneracy on the torus and the Z, gauge theory is hence four fold degenerate on a
torus while the Ising symmetric phase is not degenerate.

The above Hamiltonian is the standard Toric Code Hamiltonian on a honeycomb lattice. Unlike
SPT phases, it has fractional excitations in the bulk and hence the kind of topological order that
does not need symmetry protection. This type of topological order is usually called intrinsic and
the system is said to have long-rang entanglement. The fractional excitations include the gauge
charge e, the gauge flux m and their composite. The gauge charge e can be created in pairs with
string operator 7°7%7%... and the gauge flux m can be created in pairs with string operator 77777 ...

as shown in Fig.5 (b).
1 \
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Figure 6: String operator configurations for calculating the topological spin and braiding statistics
of fractional excitations. In the exchange subfigure, the arrows in the horizontal directions are on
top of each other, although we shifted them to show their time dependence; the same is true for
the vertical arrows.

The statistics of the fractional excitations can be read from the self commutation and mutual
commutation relations of the string operators. In particular, the topological spin of a fractional
excitation can be obtained by calculating the phase factor resulting from applying the string op-
erator as shown in Fig.6 (a). Note that the arrows in the horizontal directions are on top of each
other, although we shifted them to show their time dependence; the same is true for the vertical
arrows. It is straight forward to see that both the 7%7%7%... and 7*7%7%... string operator give a
phase factor of 1 in this process, indicating that both e and m are bosonic fractional excitations.
The mutual braiding statistics of two fractional excitations can be calculated using the diagram
in Fig.6 (b). The braiding phase factor basically comes from the commutation of the two string

operators and for the e and m excitations, it is —1.

Now consider a different model with Zs global symmetry defined for the o spins.

1—0; UZ,

HIZZO';C H i 2 (34)
a <abb’'>
where the product is over all nearest neighbor triangle of plaquettes involving plaquette a, as shown
in Fig.5 (a). This Hamiltonian is again invariant under the Z symmetry [[, 7. It can be checked
that different terms in the Hamiltonian commute and the ground state can be found exactly. It
may not be immediately obvious, but the ground state is again a superposition over all domain
configurations but with phase factors. In particular, the configuration gets a —1 sign if there are
an odd number of domain wall loops between domains.

W1 =Y (~)¥PD) (35)

D
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where D labels domain configurations and N (D) is the number of domain wall loops in this domain
configuration.

H'is a model with nontrivial Zo SPT order, similar to the CZX model discussed above. One way
to see its nontrivial SPT order is by looking at the edge states, as we did in the CZX case[18]. Here
instead we are going to use the ‘braiding statistics approach’ discussed in [18]. In particular, we
are going to show that the duality transformation maps H! to a different Z5 gauge theory than
that of HY, demonstrating the nontrivial-ness of the SPT order in H!.

Now apply the duality transformation as described above to H' by mapping the Z domain degrees
of freedom ¢ to Z3 domain wall degrees of freedom 7 as

Tab = Ta% (36)

The same constrain applies
TszTchTcZa =1 (37)
1—77 ,
The terms in the Hamiltonian get mapped to [ [, 75 T sy~ @ 2" and put together the full Hamil-
tonian of the Z gauge theory is

=-S=+S10= II (38)

v e€v p e€p e€legs of p

This is the Hamiltonian of the ‘twisted’ Zs gauge theory. While the Hamiltonian looks complicated,
the ground state has a simple form, which can be deduced from the duality mapping. The ground
state is a superposition of all domain wall configurations, with each domain wall loop carrying a
phase factor of —1.

[y => ()N 0) (39)

C

where C' labels domain wall configurations and N(C) is the number of domain wall loops in this
domain wall configuration. Note that here N(C) counts only the domain wall loops that bound a
domain. On a torus, not every loop configuration bounds a domain. In particular, those along the
nontrivial cycles of the torus do not. We have the choice of having them or not having them in the
ground state wave function and superposing them with different weights. This freedom gives rise
to the four fold ground state degeneracy on the torus, similar to the Toric Code case.

On the other hand, H, ; represents a different kind of Z5 gauge theory than the Toric Code as its
fractional excitations have different statistics. The string operators that create such quasiparticle
excitations are as shown in Fig.5 (c¢). The gauge charge is still created by 7%7%77... which commutes
with every term of the Hamiltonian except the two plaquette terms at the end. On the other hand,
the 7%7%77... operator, which creates gauge flux excitations in the Toric Code model, violates pla-
quette terms along its length in H, ;. Therefore, it is not a string operator for deconfined excitations
any more. It can be modified in such a way that it commutes with all the Hamiltonian terms along
its length. In Fig.5 (c), we illustrate the modification by marking the edges adjacent to the string
with red, indicating that there are non-trivial actions on the domain wall degrees of freedom on
those edges. The extra nontrivial action is some phase factor in 7% basis depending on the degrees
of freedom both along the path and on the adjacent edges.

The change in string operator leads to the change in fractional statistics. The topological spin of
the gauge charge remains the same, as the 7°777%... operator remains the same. That is, the gauge

charge is a boson. The braiding statistics of —1 between the gauge charge and the gauge flux is
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still the same, as the 7°7%77... operator and the modified gauge flux string operator, which involves
7P7%7® ... and some phase factors still anti-commute with each other. However, the topological spin
of the gauge flux can change due to the change in its string operator. Of course, without specifying
the exact form of the new string operator, we cannot calculate explicitly the resulting statistics
according to Fig.6 (exchange). We are not going to do this in this note, but only state that the

topological spin turns out to be ¢ for the gauge flux excitation of H, 91.

Therefore, Hg and H ; represent two different types of Zs gauge theories. They both contain gauge
charge excitations which are bosonic and gauge flux excitations which braiding with the gauge
charges with a —1 phase factor. However, the gauge flux excitations is a boson for Hg and a
semion for H ;. There are the two, and the only two, distinct types of Zs gauge theory with bosonic
gauge charge in 2D. Correspondingly, H? and H' corresponds to two different SPT phases with
Zo global symmetry. Here we are using a claim that two models with the same global symmetry
correspond to different SPT phases if their dual gauge theory have different topological order (have
different statistics). More detailed discussion of this relation and of the relevant models can be
found in [18].

6 Brief survey of SPTs in various dimensions

We conclude this note with a brief survey of interesting SPT phases in various dimensions.

1. In 1D, the Haldane chain model illustrates the key feature of SPT phases — degenerate edge
state forming a projective representation of the symmetry. Moreover, it provides prototypical
example for nontrivial SPT phases with simple and important symmetries: time reversal,
SO(3) spin rotation, and discrete Zs X Za spin rotation (7 rotation along z, y and z direction).
With other symmetries, it is possible to have more varieties of SPT phases in spin / boson
systems, but the key property of degenerate edge mode with projective representation remains
the same.

2. In 1D fermion system, a topological phase with very similar structure exists — the Majorana
chain model introduced by Kitaev[16]. The Majorana chain model does not belong to the
class of SPT phases because its topological order does not require symmetry protection, but
its ground state has a very similar structure to that of the AKLT model and I would like to
discuss it briefly.

The Majorana chain model exists in a 1D fermion chain with fermion creation and annihilation
operators CL and c;. One such complex fermion mode can be decomposed into two Majorana
modes with Majorana operators

Vok—1 = CL + Ck, Yok = i(C/t; — ck) (40)

which satisfies 72 = 1, {7i,7;} = 1. Of course, this is just a mapping of operators in
the system and it can be applied to any fermion Hamiltonian. One special feature of this
mapping is that the Majorana operator is a combination of fermion creation and annihilation
operators and hence breaks charge conservation symmetry. This is related to the fact that
the Majorana chain model we are going to study breaks charge conservation symmetry and
is a superconductor.

The Hamiltonian of the Majorana chain is, in the exactly solvable limit

Hye = Z 1Y2kY2k+1 (41)
A
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Figure 7: The Majorana chain model: each lattice site contains a fermion mode which can be
decomposed into two Majorana modes. The Majorana modes couple to another one on a nearest
neighbor site, leaving one Majorana modes at each end of an open chain, giving rise to a two fold
degeneracy.

That is, every Majorana mode is coupled to another one on a neighboring lattice site, as
shown in Fig.7. This form of coupling is similar to that of the Haldane chain shown in

Fig.1. If we recombine the coupled Majorana modes into a fermion mode as bl = W#,
b, = %, then the Hamiltonian becomes
Hye = (1—2bfby) (42)

k

That is, the new fermion modes decouple in the Hamiltonian and in the ground state they
are filled.

The interesting feature of this model again shows up on the boundary which holds isolated
Majorana modes 1, y2n that are not coupled to anything. These two modes give rise to
the two fold ground state degeneracy in an open chain. This Majorana edge mode is similar
to the spin 1/2 edge mode of the Haldane chain, but also different in that each Majorana
mode does not form an independent Hilbert space and the two fold degeneracy does not need
protection of symmetry. In a fermion system, in which the fermion parity symmetry is always
preserved, this two fold ground state degeneracy is stable to all kinds of perturbation.

3. In 2D, we talked about the topological insulator — the quantum spin Hall effect. There is also
a topological superconductor which can be obtained from a similar construction. That is, one
can take one copy of p + ip superconductor for spin up and one copy of p — ip superconductor
for spin down and stack them together. The boundary of the system would host a left moving
Majorana mode with spin up and a right moving Majorana mode with spin down. When time
reversal symmetry is respected, this helical Majorana edge mode cannot be removed.

4. There are many different SPT phases in strongly interacting boson systems as well. One
particularly interesting one is the bosonic integer quantum Hall system|[25]. Unlike fermions,
bosons do not fill Landau levels. To have an integer quantum Hall effect in boson system,
the bosons have to interact very strongly. In particular, one can imagine having two species
of bosons in a magnetic field each with filling fraction one. Their interaction is such that one
species sees the other species as a vortex. In this way, the system can have quantized EM
Hall response with o, = 2¢2/h. On the other hand, this is a symmetry protected phase, in
the sense that the nontrivial feature is only present if the charge conservation symmetry of
the system is preserved. If charge conservation is broken, then the topological order becomes
trivial. In particular, this implies that unlike the fermionic integer quantum Hall system, the
thermal Hall conductance of the system is zero (no matter whether charge conservation is
preserved or not). In [22], it was shown numerically that this kind of order can be realized
with two-body delta interaction among the bosons.

The difference between the fermionic and boson integer quantum Hall effect can be understood
from their edge mode structure. As shown in Fig.8, the fermionic integer quantum Hall system
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Figure 8: Fermionic vs. bosonic integer quantum Hall effect, difference in edge structure.

hosts a chiral conducting channel which carries both energy and charge. Therefore, both the
EM and thermal Hall conductance are nonzero. The bosonic integer quantum Hall system
on the other hand hosts two edge modes, a clockwise one carrying both charge and energy
and a counter-clockwise one carrying only energy but not charge. Therefore, the EM Hall
conductance is nonzero but the thermal Hall conductance is zero.

5. 3D topological insulators[8, 20, 23, 11, 12, 6] and topological superconductors are most promi-
nent examples of SPT phases in 3D. They host gapless Dirac and Majorana cones respectively
on their surface, where the spin winds around the cone as shown in Fig.9 (figure taken from
[12]).

Another interesting feature of 3D SPT phases is that the boundary can be gapped and
symmetric at the same time. While this is not possible on the 1D boundary of 2D SPTs, the
2D boundary of 3D SPT phases can develop topological order and remove gapless excitation
without breaking symmetry. The nontrivial-ness of the boundary state is then encoded in the
way the fractional excitations of the topological phase transform under the global symmetry.
Just like a single Dirac cone cannot appear in a pure 2D systems with time reversal symmetry
but can appear on the surface of a 3D TI, the topological order that appears on the surface
of a 3D SPT phase is anomalous and cannot exist in purely 2D systems. This possibility
has been explored in various 3D SPT phases, including the fermionic and bosonic topological
insulator, topological superconductor and topological crystalline insulators[27, 29, 3, 2, 28, 4,
19, 7, 13, 10].
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