
Physics 129a Homework 4 Due 10/26/23

1. Show that the character of the direct product representation equals the product of the characters
of the component representations. That is, if

D(µ×ν) = D(µ) ⊗D(ν) (1)

then
χ(µ×ν)(g) = χ(µ)(g)× χ(ν)(g) (2)

2. Recall all the properties we have derived for the quaternion group in homework 2.

a. If we are to write down the character table for the quaternion group, what is the size of the
table? why?

b. What are the dimensions of the irreps?

c. Construct the character table for the quaternion group. You can use the following steps: 1.
Write down the first row (corresponding to the trivial irrep) 2. For the rows corresponding to
nontrivial 1D irreps, directly solve for the nontrivial 1D irreps and fill in the characters 3. use the
orthogonality property to determine the character for the last row (corresponding to the 2D irrep).

Suppose that we take the direct product of two copies of the 2D irrep of the quaternion group.

d. what is the character of this direct product representation?

e. Decompose this direct product representation into irreps.

Answer these questions without using the explicit form of the 2D irrep, but only its character.
(hint: use the result in problem 1.)

3. In this problem, we are going to prove the one to one correspondence between characters and
equivalence classes of representations.

a. Suppose that D is a reducible representation of G. With certain invertible transformation S, we
can put D into a block diagonal form. SD(g)S−1 = ⊕iDi(g). Show that the character of D equals
the sum of the characters of Di.

b. Suppose that D and D′ are two representations of the same dimension and they have the same
character. Use the orthogonality property of characters to show that D and D′ must decompose
into the same set of irreps.

c. Show that D and D′ are related by an invertible transformation AD(g)A−1 = D′(g), hence are
equivalent.

4. Consider the symmetry group of a regular triangle (D3) as some linear transformation of the two
dimensional vector space where the triangle is embedded. When the coordinates x and y undergo
the linear transformation of the group, the quadratic form
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is transformed into another quadratic form with different a′, b′, c′. (a′, b′, c′) as a three dimensional
vector is related to (a, b, c) by a 3 × 3 matrix. The 3 × 3 matrices obtained in this way form
a representation of the D3 group. Find the character of this representation. If the representation
is reducible decompose it to its irreducible components. (You don’t need to find the basis trans-
formation to put the matrix into block diagonal form. Just state which irreps it should contain is
enough.)
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