1. The point group $C_{3 v}$ is, among other things, the symmetry group of the ammonia molecule NH_{3}, which forms a right pyramid on an equilateral triangle base, as shown below. $A B=B C=C A . O$ is the center of the triangle and $O D$ is perpendicular to $\triangle A B C$.

The symmetry group is generated by a 3 -fold rotation c around the axis $O D$ and a reflection σ_{v} with respect to plane OAD.
(a) Show that $C_{3 v} \simeq\left(\right.$ is isomorphic to) D_{3}.
(b) Show that the molecule can possess a permanent electric dipole moment \vec{P}. What is the direction of this electric dipole moment?
(c) A magnetic dipole moment, like a magnetic field, is an axial vector. Under reflection symmetry, it gets an extra minus sign compared to a regular vector (such as electric dipole). For example, under reflection with respect to the $x y$ plane, the magnetic field (M_{x}, M_{y}, M_{z}) goes to ($-M_{x},-M_{y}, M_{z}$). Its transformation under rotation is the same as a regular vector. Show that the NH_{3} molecule cannot possess a permanent magnetic moment.
(d) Now put this NH_{3} molecule onto the lattice site of a two dimensional honeycomb lattice, such that it sees some lattice potential (which perturbs the original Hamiltonian of the molecule). The molecule can be oriented in different directions with respect to the lattice. In what orientation does the energy spectrum degeneracy structure remain the same? Explain your reason.

2. Conjugacy classes of $S O(3)$

In this problem we are going to show that the conjugacy classes of $S O(3)$ consist of rotations around different axes but with the same angle. That is we are going to demonstrate the relation

$$
\begin{equation*}
e^{-i \phi \vec{n}_{2} \cdot \vec{J}} e^{i \theta \vec{n}_{1} \cdot \vec{J}} e^{i \phi \vec{n}_{2} \cdot \vec{J}}=e^{i \theta \vec{n}_{3} \cdot \vec{J}} \tag{1}
\end{equation*}
$$

where $\vec{n}_{3}=R_{\vec{n}_{2}}(\phi) \vec{n}_{1} . R_{\vec{n}_{2}}(\phi)$ is the three dimensional real orthogonal representation of rotation around \vec{n}_{2} through angle ϕ and it acts on the three dimensional real vector space of \vec{n}.
(1) Define $S_{y}^{x}(\phi)=e^{-i \phi J_{x}} J_{y} e^{i \phi J_{x}}, S_{z}^{x}(\phi)=e^{-i \phi J_{x}} J_{z} e^{i \phi J_{x}}$. Take the derivative of $S_{y}^{x}(\phi)$ with respect to ϕ and show that $\frac{\partial}{\partial \phi} S_{y}^{x}(\phi)=S_{z}^{x}(\phi)$. (hint: $\left.\frac{\partial}{\partial \phi} e^{i \phi J_{x}}=e^{i \phi J_{x}} i J_{x}\right)$.
(2) Similarly show that $\frac{\partial}{\partial \phi} S_{z}^{x}(\phi)=-S_{y}^{x}(\phi)$
(3) Combining these two equations and use the boundary condition that $S_{y}^{x}(0)=J_{y}, S_{z}^{x}(0)=J_{z}$ to obtain solutions $S_{y}^{x}(\phi)=\cos \phi J_{y}+\sin \phi J_{z}, S_{z}^{x}(\phi)=\cos \phi J_{z}-\sin \phi J_{y}$. That is, J_{y} and J_{z} rotate into each other under the conjugation of $e^{-i \phi J_{x}}$ as if they are the y and z component of a three dimensional vector transforming under rotation around x axis through angle ϕ.
(4) Taking into account the fact that $S_{x}^{x}(\phi)=e^{-i \phi J_{x}} J_{x} e^{i \phi J_{x}}=J_{x}$, show that $S_{\vec{n}}^{x}(\phi)=e^{-i \phi J_{x}}(\vec{n} \cdot \vec{J}) e^{i \phi J_{x}}=$ $\left(R_{x}(\phi) \vec{n}\right) \cdot \vec{J}$, where $R_{x}(\phi)$ is the three dimensional orthogonal matrix representing rotation around x axis through angle ϕ and it acts on the three dimensional vector \vec{n}.

Now convince yourself that this relation works not only for x axis rotation but for rotation around arbitrary axis as well. That is, $e^{-i \phi \vec{n}_{2} \cdot \vec{J}}\left(\vec{n}_{1} \cdot \vec{J}\right) e^{i \phi \vec{n}_{2} \cdot \vec{J}}=\left(R_{\vec{n}_{2}}(\phi) \vec{n}_{1}\right) \cdot \vec{J}$. You don't need to show work for this part, but if you want to work everything out, it is helpful to choose three vectors \vec{n}_{2}, $\vec{n}_{2}^{a}, \vec{n}_{2}^{b}$ which are orthogonal to each other and build up the relation from there.
(5) Now use the above relation and show that

$$
\begin{equation*}
e^{-i \phi \vec{n}_{2} \cdot \vec{J}} e^{i \theta \vec{n}_{1} \cdot \vec{J}} e^{i \phi \vec{n}_{2} \cdot \vec{J}}=e^{i \theta \vec{n}_{3} \cdot \vec{J}} \tag{2}
\end{equation*}
$$

where $\vec{n}_{3}=R_{\vec{n}_{2}}(\phi) \vec{n}_{1}$. (hint: decompose $e^{i \theta \vec{n}_{1} \cdot \vec{J}}$ as a polynomial series.)

3. P orbital

The p orbital of an electron has three components p_{x}, p_{y}, p_{z}. The angular part of the wave function in these orbitals are given by

$$
\begin{equation*}
\psi_{x}(\theta, \phi)=\mathcal{N} \sin \theta \cos \phi, \quad \psi_{y}(\theta, \phi)=\mathcal{N} \sin \theta \sin \phi, \quad \psi_{z}(\theta, \phi)=\mathcal{N} \cos \theta \tag{3}
\end{equation*}
$$

where θ and ϕ are the usual polar coordinates and \mathcal{N} is some pre-factor independent of θ and ϕ.
(1) Show that the three wave functions are orthogonal to each other. Hint: inner product of wave functions in polar coordinates is given by $\int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \psi^{*}(\theta, \phi) \tilde{\psi}(\theta, \phi) \sin \theta d \theta d \phi$
(2) The angular momentum operator in z direction is given by $J_{z}=-i \frac{\partial}{\partial \phi}$. How is it represented as a three dimensional matrix in the Hilbert space spanned by ψ_{x}, ψ_{y} and ψ_{z} ?
(3) The angular momentum operator in x direction is given by $J_{x}=i\left(\sin \phi \frac{\partial}{\partial \theta}+\cot \theta \cos \phi \frac{\partial}{\partial \phi}\right)$. How is it represented as a three dimensional matrix in the Hilbert space spanned by ψ_{x}, ψ_{y} and ψ_{z} ?
(4) The angular momentum operator in y direction is given by $J_{y}=i\left(-\cos \phi \frac{\partial}{\partial \theta}+\cot \theta \sin \phi \frac{\partial}{\partial \phi}\right)$. How is it represented as a three dimensional matrix in the Hilbert space spanned by ψ_{x}, ψ_{y} and ψ_{z} ?
(5) Show that if the electron moves on a spherical shell of radius r, then ψ_{x}, ψ_{y} and ψ_{z} are proportional to the x, y, z coordinates of the electron respectively.
(6) Which irreducible representation do p_{x}, p_{y} and p_{z} orbitals form under $S O(3)$ rotation?

