
Physics 129a Lecture 2 Caltech, 09/28/23

2 Examples

2.1 The cyclic group Cn

The symmetry group of rotations of a regular polygon with n directed sides.

Figure 1: Directed n-gon

The elementary rotation operation that maps a directed n-gon back to itself is rotation through
an angle 2π/n. Denote this elementary rotation operation as c. Applying c for r times (r =
0, 1, ..., n− 1), we can get all the rotation symmetry operations of a directed n-gon. In this sense c
is called a ‘generator’ of the group. We write

Cn = gp{c}, cn = e (1)

which completely specifies the group.

Applying c for n times is the same as doing nothing and we have

cn = e (2)

We say that c is an order n element in the group. In general, the order of an element a in the
group is the smallest nonzero positive integer ka such that composing ka copies of a together gives
e, aka = e. ka depends on a.

The set of elements in the group are {e, c, c2, ..., cn−1}. The composition rule is

ctcs = ct+s(mod n) (3)

Obviously this is an abelian group

csct = ctcs = cs+t(mod n) (4)

Now consider the set of integers {0, 1, ..., n− 1} together with the operation of addition modulo n.
It forms the group Zn. In fact, there is a one to one correspondence between the elements of Cn

and the elements of Zn: cs ∼ s, s = 0, 1, ..., n − 1 and their composition rules match exactly. We
say that Cn is isomorphic to Zn, Cn

∼= Zn.
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Another way of specifying the composition rule of a group is to use the multiplication table. That
is, to list the composition result for each pair of elements a and b ∈ G in a square table. For
example, for C3, the multiplication table reads

For abelian groups, the multiplication table is invariant under transpose. Each row and each column
corresponds to a permutation of all the group elements.

2.2 The Dihedral Group Dn

The symmetry group of a regular polygon with n undirected sides.
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Figure 2: Undirected n-gon

Dn contains all the elements of Cn, cr, r = 0, 1, ..., n−1. The composition of elements in this subset
remains in this subset and satisfies the associativity, the existence of identify and the existence of
inverse axioms. We say that the subset of elements {cr, r = 0, 1, ..., n− 1} form a subgroup of Dn.

Moreover, because now the sides are undirected, the polygon can be mapped back to itself by a
reflection with respect to the reflection axes (dotted lines) shown in the figure. For a n polygon,
there are n reflection axis. Denote the reflection operations as b1,..., bn. Each bi is an order two
element of the group, because doing reflection twice is the same as doing nothing

b2i = e (5)

Each subset {e, bi} also forms a subgroup of Dn.

The full group contains 2n elements {cr(r = 0, 1, ..., n − 1), bi(i = 1, ..., n)}. Because of this, the
Dihedral groups are also (confusingly) denoted as D2n. In this course, we will use the notation of
Dn.

What is the relation between the set of rotation operations cr and the set of reflection operations
bi?

First note that their composition can be non-commutative.

Consider the case of D3. The application of b1 followed by c is different from the application of
c followed by b1, which can be seen by tracking the position of the vertices of the triangle (with
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respect to the background labeling of A, B and C)

cb1 : A→ B → C,B → A→ B,C → C → A
b1c : A→ B → A,B → C → C,C → A→ B

(6)

From this we see that cb1 = b3, b1c = b2. Therefore, D3 is nonabelian.

Secondly, all group elements can be generated by c and b1. We can write D3 = gp{c, b1}, c3 =
e, b21 = e. However, this is not a complete description of D3. We also need to specify the relation
between b1 and c. We notice that (b1c)

2 = b22 = e. Adding this condition completes the description
of D3

D3 = gp{c, b1}, c3 = e, b21 = e, (b1c)
2 = e (7)

In general, the composition rule of the elements in D3 is

ctcs = ct+s, csbi = bi−s, bic
s = bi+s, bibj = cj−i (8)

where t, s = 0, 1, 2; i, j = 1, 2, 3; the arithmetic t + s, i − s etc. are all defined mod 3 such
that the power of c takes value in 0, 1, 2 and the subscript of b takes value in 1, 2, 3. If we take
t, s = 0, 1, ..., n− 1, i, j = 1, 2, ..., n, the above equations give the general composition rule for Dn.

Some useful relations in D3 are

cb1c
−1 = b2, cb2c

−1 = b3, cb3c
−1 = b1, c

−1b1c = b3, c
−1b2c = b1, c

−1b3c = b2 (9)

That is, if we conjugate a reflection operation by rotation, we get a different reflection operation.
This is intuitive to understand: conjugating reflection by rotation corresponds to rotating the
reflection axis and through direct observation we can see that the above relations should hold.

Now let’s consider the group of D4. D4 is similar to D3 in that it consists of rotations and reflections.
The group is of order eight with group elements

{e, c, c2, c3, b1, b2, b3, b4} (10)

Rotations form an order 4 subgroup {e, c, c2, c3} while each reflection generates an order 2 subgroup
{e, bi}.

One difference between D4 and D3 is that, not all reflection axes can be rotated into each other.
In particular

cb1c
−1 = b3, cb2c

−1 = b4, cb3c
−1 = b1, cb4c

−1 = b2 (11)

So there are two different types of reflection operations.

The element c2 is special in D4 in that it commutes with all the other elements (please check),
while no such element exists in D3. We call the subgroup generated by c2 – {e, c2} – the center of
the group.

In general, a dihedral group Dn is completely specified by

Dn = gp{c, b}, cn = e, b2 = e, (bc)2 = e (12)
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2.3 Permutation group Sn

The permutation of n objects.

Sn contains n! elements, which permutes the ordering of objects (1, ..., n) to (p1, ..., pn). Compo-
sition of group elements is defines as successive application of such permutations. Note that the
notation below is different from what I used in the lecture. These are two different ways to label
permutations.

• n = 2

The permutation of two objects 1 and 2 involves only one nontrivial operation: the exchange
of 1 and 2. Denote this element as a = (1, 2). This notation means that object 1 is moved to
position 2 and object 2 to position 1 in this operation. Note the redundancy in this notation
because (1, 2) and (2, 1) label the same operation. To remove this redundancy, we put the
object with the smallest number in the first position.

Obviously a2 = e. S2 is isomorphic to C2 and Z2.

• n = 3

The permutation of three objects 1, 2 and 3 involves three exchange operations (1, 2), (2, 3), (1, 3)
and two cyclic permutation operations (1, 2, 3), (1, 3, 2). Here (i, j) means that object i is
mapped to position j and object j is mapped to position i, the third object is left untouched.
(i, j, k) means that object i is mapped to position j, j to k and k to i. The exchange opera-
tions are of order 2 while the cyclic permutation operations are of order 3. Note that we have
used the same convention to remove redundancy in the notation.

By comparing to the effect of elements in D3 on the three vertices of the triangle, it is easy
to see that S3 ∼= D3.

• n = 4

S4 contains 4! = 24 elements. One is the identity e. Six of them are exchange of two objects
(i, j) (i to j and j to i, others untouched) and are of order 2. Three of them are exchanges
of two pairs of objects (i, j)(k, l) (i to j and j to i, k to l and l to k), still of order 2. Eight
of them are cyclic permutations of three objects (i, j, k) (i to j, j to k, k to i, the other one
untouched) and are of order 3. Six of them are cyclic permutations of four objects (i, j, k, l)
(i to j to k to l to i) and are of order 4.

Obviously this is a different group than D4, but we can identify D4 as a subgroup of S4
corresponding to the subset of elements

{e, (A,C), (B,D), (A,B)(C,D), (A,D)(B,C), (A,C)(B,D), (A,B,C,D), (A,D,C,B)} (13)

That is, D4 can be identified as a subgroup of S4.
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