
Physics 129a Lecture 3 Caltech, 10/03/23

2 Examples

2.3 The permutation group

Cayley’s Theorem

Every finite group of order n can be considered as (is isomorphic to) a subgroup of Sn.

To prove this theorem, consider the n group elements of group G as the objects that are being
permuted by Sn. We need to demonstrate the correspondence between the group elements of G
and that of a subgroup of Sn.

First, notice that left multiplication of an element g ∈ G on all group elements {h} of G corresponds
to a permutation of these n objects. This is because, firstly, if gh1 = gh2, then h1 = h2, which
can be obtained by multiplying g−1 on both sides of the first equation. This implies that after
left multiplication of g, there are n different elements in {gh, h ∈ G} and they all belong to G.
Therefore, left multiplication corresponds to the permutation of the n group elements in G.

Secondly, the permutation operation Pg obtained with left multiplication of g ∈ G forms a group
where the composition of Pg1 and Pg2 is simply the permutation operation obtained with left
multiplication of g1g2. The identity operation is Pe. The inverse of Pg is Pg−1 . And it is easy to
verify that the composition of Pg’s is associative. �

* Note that this embedding of a group of order n into the permutation group Sn is different from
the previous embedding of D4 (which has 8 elements) into S4.

2.4 The group of integers Z

At the beginning of the class, we mentioned that the set of all integers Z form a group. The
composition rule is addition and the identity element is 0. This group is different from all the
previous examples in that there are an infinite number of elements. The group is still discrete but
not finite. The Z group can be thought of as the n→∞ limit of the Zn groups.

To take into account infinite groups like Z, the generating set of a group needs to be more rigorously
defined as a subset such that every element of the group can be expressed as the combination
(under the group operation) of finitely many elements of the subset and their inverses. Under this
definition, we can choose either {1} or {−1} as the generating set of the group of integers.

2.5 Circle group

The symmetry group of a directed circle.
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Figure 1: Directed circle

A directed circle has a continuous rotation symmetry. The circle is invariant under rotation by any
angle θ ∈ [0, 2π). The composition of two rotation operations corresponds to the addition of two
angles θ1 + θ2(mod 2π).

If we use the exponential eiθ to represent the group element, then the group elements correspond
to complex numbers of absolute value 1. The composition rule becomes multiplication eiθ1eiθ2 =
ei(θ1+θ2)mod 2π. The circle group has an infinite number of elements and the elements are continuous.
Therefore, the circle group is said to be continuous.

The circle group can be thought of as another n → ∞ limit of the Cn, hence the Zn, group. This
is a different limit than the group of integers Z.

2.6 Matrix group

A set of matrices can form a group.

General Linear Matrix Group: the set of n × n invertible matrices with matrix multiplication as
the composition rule forms a group.

Comments:

(1) If the entries of the matrices are real numbers, the matrix group is said to be over R and denoted
as GL(n,R). If the entries of the matrices are complex numbers, the matrix group is said to be
over C and denoted as GL(n,C).

(2) The identity element in the group is the identity matrix.

(3) The matrix group is in general nonabelian.

(4) If we restrict to the set of matrices with determinant one, we get the special linear group
SL(n,R) or SL(n,C).

(5) We can also restrict to orthogonal or unitary matrices and get the orthogonal group O(n) or
the unitary group U(n).
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3 Basic concepts in group theory

3.1 Conjugacy class

Conjugacy, definition: two elements a and b of a group G are conjugate if there exists an element
g ∈ G such that a = gbg−1. The element g is called the conjugating element.

Example: in the Dihedral group D3, two reflections b1 and b2 are conjugate because b2 = cb1c
−1.

Properties:

(1) every element is conjugate to itself a = eae−1.

(2) if a is conjugate to b (a = gbg−1), then b is conjugate to a (b = g−1ag).

(3) if a is conjugate to b (a = gbg−1), and b is conjugate to c (b = hch−1), then a is conjugate to c
(a = ghc(gh)−1).

Conjugacy defines a particular kind of equivalence relation among group elements and conjugate
elements are similar to each other in some ways.

For example, if a and b are conjugate to each other, then they have the same order.

To show this, assume the order of a is ka and the order of b is kb and b = gag−1. Then

bka = (gag−1)ka = gakag−1 = geg−1 = e (1)

Therefore, kb is a divisor of ka. Similarly we can show that ka is a divisor of kb. Therefore, ka = kb.
�

Conjugacy class: Elements of a group which are conjugate to each other are said to form a conjugacy
class.

Comments:

(1) Each element of a group belongs to one and only one conjugacy class. That is, different
conjugacy classes are disjoint. (If a is conjugate with a set of bi’s and also conjugate with a set of
cj ’s, then the bi’s and cj ’s are also conjugate with each other and they belong to the same conjugacy
class.)

(2) The identity element forms a class by itself. (For any g ∈ G, geg−1 = e.)

(3) Each group can be partitioned into a number of disjoint conjugacy classes.

Examples:

(1) Cyclic group Cn

Because gag−1 = a for any a and g in Cn, each group element forms a conjugacy class by itself.
The number of conjugacy classes is equal to the number of group elements.
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This is a result common to all abelian groups.

(2) Dihedral group D3
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Figure 2: D3 as the symmetry group of undirected regular triangle

D3 contains 6 group elements {e, c, c2, b1, b2, b3}, where c is rotation by 2π/3 and bi’s are reflection
operations. Direct calculation shows

bicb
−1
i = c2, cbic

−1 = bi(mod 3)+1, (2)

That is, c is conjugate to c2, and the bi’s are conjugate to each other.

Therefore these 6 elements can be partitioned into three conjugacy classes (e), (c, c2), (b1, b2, b3).
Elements in the same conjugacy class represent similar operations: doing nothing, rotation, reflec-
tion.

(3) Dihedral group D4
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Figure 3: D4 as the symmetry group of undirected square

The D4 group contains 8 elements

{e, c, c2, c3, b1, b2, b3, b4} (3)

where c is rotation by π/2, and bi is reflection across the corresponding axis.

Direct calculation shows that

cb1c
−1 = b3, cb3c

−1 = b1, cb2c
−1 = b4, cb4c

−1 = b2, bicb
−1
i = c3 (4)

Therefore, the 8 elements are partitioned into five conjugacy classes (e), (b1, b3), (b2, b4), (c, c3),
(c2). Note that while elements in the same conjugacy class have the same order, the reverse is not
true. For example, b2 and b1 are both order 2 elements, but they are not conjugate to each other.
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3.2 Subgroup

Definition: A subgroup H of G is a subset of G which itself forms a group under the composition
law of G.

Comments:

(1) The identity element e forms a subgroup by itself.

(2) The whole group G also forms a subgroup according to this definition.

(3) Any subgroup which is different from {e} and G is called a proper subgroup.

Example: C2 = {e, b1} and C3 = {e, c, c2} are both proper subgroups of D3.
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