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5 Irreducible representations

5.9 Irreps of the circle group and charge

We have been talking mostly about finite groups. Continuous groups are different, but their rep-
resentation theory can be similar in many ways. Let’s consider the simplest case of a continuous
group: the circle group.

The circle group is abelian, therefore all of its irreps are one dimensional. The trivial one maps
every group element labeled by θ ∈ [0, 2π) to 1.

A nontrivial representation is given by D(1)(θ) = eiθ. Actually, the circle group has infinitely many
different irreps given by

D(n)(θ) = einθ, n ∈ Z (1)

While the group elements in the circle group are continuous, its irreps are discrete, labeled by
integers n, which is usually referred to as ‘charge’. This is because, consider a quantum mechanical
state containing n electrons and hence −n elementary charges, where n is an integer. Denote the
number operator of the electrons as N̂ and N̂ acting on the state gives eigenvalue n.

N̂ |ψ〉 = n|ψ〉 (2)

Now if we apply transformation eiN̂θ to the state, the state remains invariant up to a global phase
factor

eiN̂θ|ψ〉 = einθ|ψ〉 (3)

Therefore, |ψ〉 transforms as a 1D representation of the circle group eiN̂θ labeled by n where n is
the number of (negative) charges contained in the state. Similarly, we would call irreps of other
symmetry groups as symmetry charges.

In general, whenever a system has a fixed number of particles (the particles could be electrons,
atoms, ions, etc. independent of how much electronic charge they carry), the system has the
symmetry. This is usually called the ‘charge conservation symmetry’ in physics. If the charge
conservation symmetry is broken, i.e. the system does not have a fixed number of particles, there
are very serious consequences. The system will be a superconductor, a superfluid or a Bose-Einstein
condensate.

As the irreps are one dimensional, their character is simply given by χ(n)(θ) = einθ. The set of
characters, as continuous functions of θ, satisfy the following orthogonality condition

< χ(n1), χ(n2) >=
1

2π

∫ 2π

0
dθe−in1θein2θ = δn1,n2 (4)

Among all the irreps, only the ones labeled by n = 1 and n = −1 are faithful. All others are
unfaithful. Under tensor product, the set of irreps form a group – the group of integers.

D(n1) ⊗D(n2) = D(n1+n2) (5)

Q: what irrep does the 2D real orthogonal representation contain?
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6 Applications of finite groups

A. Zee, Group theory in a Nutshell for Physicists, chapter III.2

6.1 Vibration of coupled oscillators

Now let’s see how our understanding of symmetry allows us to obtain insight into the oscillation
eigenmodes of certain systems without knowing all the details of the dynamics of the system.

Imagine that we have a mechanical system where several mass blocks are bound together and in-
teract with each other. Suppose that the equilibrium configuration and the interaction of these
mass blocks have certain symmetry. Then if they undergo small vibrations around their equilib-
rium position, the dynamics of the system also has the same symmetry. In particular, we can
find elementary ‘modes’ of such vibrational motion which form irreducible representations of the
symmetry. Let’s see how this happens in the following examples.
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Figure 1: A coupled oscillator with reflection symmetry with respect to x = 0.

Let’s consider a system composed of two identical blocks connected with a spring in the middle.
The spring has Hooke constant k. At equilibrium, the two blocks are at x01 = a and x02 = −a
respectively, as shown in Fig.1. This equilibrium configuration is invariant under reflection with
respect to x = 0. Moreover, the form of interaction (generated by the spring) also respects this
symmetry. What does this say about the dynamics of the system? From simple analysis (or purely
physical intuition), we know that there are two eigenmodes for the motion of the two blocks. One
is the center of mass motion, where the two blocks move together without changing their relative
position. The other is relative motion, where the center of mass (the middle point of the central
spring) does not move while the two blocks move relative to each other. These two modes of motion
both transform in a special way under reflection. In the center of mass motion, the displacement
are the same for block 1 and 2, therefore reflection maps the configuration to minus itself. In
the relative motion, the displacement of the two blocks are opposite to each other, therefore, the
configuration remains invariant under reflection. Let’s try to describe this in a more concrete way.

The motion of the oscillator is described by x1(t) and x2(t), the displacement of the two blocks
relative to their equilibrium position. The equation of motion is given by

md2x1
dt2

= −k(x1 − x2)
md2x2

dt2
= −k(x2 − x1)

(6)

Or in matrix form, we can write

m
d2X

dt2
= −KX (7)

where X =

(
x1
x2

)
, K =

(
k −k
−k k

)
.
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The eigenmodes are the vibrational motions which have a sin or cos dependence on time. That is,
we are looking for solutions of the form X = X̃ cos(ωt). Plug it into the above equation we get

mω2X̃ = KX̃ (8)

Therefore, X̃’s are eigenvectors of K with eigenvalue mω2. Now, without knowing the details of K,
it seems we cannot move forward. However, because we have the knowledge about the symmetry
of the system, we can understand a lot about these X̃’s without actually diagonalizing K.

Recall that the system is invariant under reflection across x = 0. This corresponds to the linear

transformation of D(b) =

(
0 −1
−1 0

)
. The fact that the dynamics of the system is invariant under

this symmetry translates into the relation that

D−1(b)KD(b) = K (9)

or equivalently
KD(b) = D(b)K (10)

What can we learn from this condition? Let’s think in a group theoretical way. Notice that the
reflection operation b generates a symmetry group. In this case, it is the C2 group with one other
element e. Of course, there can be more general cases where we have a bigger symmetry group, but

let’s focus on this simple example first. The matrices D(e) =

(
1 0
0 1

)
and D(b) =

(
0 −1
−1 0

)
form

a representation of the C2 group. Moreover, this representation is reducible. From our discussion

in the last lecture, we know that with basis transformation generated by H = 1√
2

(
1 1
1 −1

)
, we can

put this reducible representation into a block diagonal form

HD(e)H−1 =

(
1 0
0 1

)
, HD(b)H−1 =

(
−1 0
0 1

)
. (11)

That is, this reducible representation contains both irreps of C2 and each irrep is contained once.

The two irreps are supported on the one dimensional vectors H−1
(

1
0

)
∝
(

1
1

)
and H−1

(
0
1

)
∝(

1
−1

)
respectively. That is,

(
1
1

)
and

(
1
−1

)
each form a closed space under the symmetry trans-

formation. On

(
1
1

)
, the group action is represented as D(e) = 1, D(b) = −1; on

(
1
−1

)
, the group

action is represented as D(e) = 1, D(b) = 1.

On the other hand, we have the condition that D−1(g)KD(g) = K, or equivalently KD(g) =
D(g)K. From Schur’s lemma, we can show that K has to take a block diagonal form in the irrep
basis with each block being proportional to identity. That is

HKH−1 =

(
a 0
0 b

)
(12)

In order to show this, let’s suppose that HKH−1 =

(
a c
d b

)
. Because K is symmetric and H is

orthogonal, we can set c = d. Then KD(g) = D(g)K translates into(
a c
c b

)(
D(1) 0

0 D(2)

)
=

(
D(1) 0

0 D(2)

)(
a c
c b

)
(13)
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Comparing the off diagonal entries we find cD(1) = cD(2), which can only be satisfied when c = 0
as D(1) and D(2) are inequivalent irreps. On the other hand, there is no constraint on a and b.

Eq. 12 tells us that the eigenvectors of K are

(
1
1

)
and

(
1
−1

)
respectively. Therefore, without

knowing the exact form of K, but by simply considering the symmetry constraints on K, we can
find all its eigenvectors. They correspond to the support space of the irreps contained in the

representation D(g). And this matches with our intuitive expectation:

(
1
1

)
corresponds to the

center of mass motion where the displacement of 1 and 2 are the same;

(
1
−1

)
corresponds to the

relative motion where the displacement of 1 and 2 are opposite to each other. Of course, without
knowing exactly the form of K, we will not be able to determine the eigenvalues a and b which in
this case correspond to the oscillation frequency of the eigenmodes.
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