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6 Applications of (mostly) finite groups

6.3 Electron orbit of an atom

A very similar line of argument can be applied to constrain quantum dynamics using symmetry.

Suppose that we want to study how electrons move in an atom, which must be formulated using
quantum mechanics. The fundamental equation of motion to use now is Schrödinger’s equation,
instead of Newton’s law.

i~
∂

∂t
Ψ(~r, t) = HΨ(~r, t) (1)

We look for states with a periodic time dependence of the form Ψ(~r, t) = Ψ0(~r)e
−iωt and the

equation reduces to
HΨ0(~r) = ~ωΨ0(~r) (2)

which is the eigenvalue equation for H. In the Hilbert space of the electron, H is a Hermitian
operator and has a complete set of orthogonal eigenstates with real eigenvalue (which corresponds
to the energy of the eigenstates). Note that the Hilbert space of the electron is infinite dimensional.

If the system has certain symmetry which is represented on the Hilbert space as D(g), then

D−1(g)HD(g) = H (3)

Now the algebra becomes exactly the same as in the classical case, and we can reach the same
conclusion:

(1) The degenerate subspaces of eigenstates of H transform as irreps. Eigenstates in the same irrep
must be degenerate (have the same energy) while states in different irreps (which may or may not
be equivalent to each other) generically have different energy.

(2) Once we have figured out all the irreps contained in D(g), the eigenstates are obtained through
linear combinations of equivalent irreps. Inequivalent irreps cannot be superposed to form eigen-
states.

Example: consider the electron orbit in a Hydrogen atom. The system (the Hamiltonian of the
electron) is invariant under rotation around the z axis (pointing out of plane), which forms a circle
group symmetry. Therefore, the eigenstates (orbitals) of the electron can be labeled by an integer,
which labels different irreps of the circle group. Corresponding to the same integer, hence the same
irrep of the circle group, there may be different eigenstates of different eigen energies. Irreps labeled
by different integers cannot be mixed to form eigenstates.

This integer is directly proportional to the z direction angular momentum of the electron orbital. In
fact, the Hydrogen atom has full three dimensional rotation symmetry, not just rotation symmetry
around z axis. We are going to explore its consequence after we have learned more about continuous
groups.
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6.4 Electron wave function on a lattice

Let’s consider the example of an electron moving in a one dimensional chain with discrete translation
symmetry. Instead of thinking about infinite system at the beginning, let’s start from a finite size
lattice and later take the limit of system size going to infinity. To preserve translation symmetry
in a finite system, we use the so-called ‘periodic boundary condition’ and put the system on a ring.

a 

Suppose that the system contains N regularly spaced atoms and the electron moves in their poten-
tial. The hamiltonian

H =
p2

2m
+ V (x) (4)

is invariant under translation by lattice constant a, generated by eipa/~. The fact that eipa/~

generates translation can be seen from

eipa/~xe−ipa/~ = x+ a (5)

which can be deduced from the commutation relation between p and x, [x, p] = i~.

Translation symmetry then forms a CN group. The hamiltonian of the electron being translation
invariant means that each of the eigenstates corresponds to one of the irreps of CN . CN has N
irreps, given by

1, ω, ω2, ω3, ...ωN−1, ω = ei2πn/N , n = 0, 1, ..., N − 1 (6)

Each irrep is labeled by n, which is an integer mod N .

Define quantity

k ≡ 2πn

Na
(7)
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where a is the lattice constant (physical distance between two lattice sites). k is called the wave
number of the wave function. ~k is called the crystal momentum of the electron. The irrep labeled
by n can then be labeled by k and the representation matrices (numbers) are give by

1, ω, ω2, ω3, ...ωN−1, ω = eika, k = 0,
2π

Na
,

4π

Na
, ...,

2π(N − 1)

Na
(8)

Now imagine taking the limit of N going to infinity. The possible values of k increase in number,
and eventually populate every point between 0 and 2π

a . Equivalently, we can take k to take value
between −π

a and π
a because of the periodicity of k.

Recall the result we obtained previously.

The (degenerate subspaces of) eigenstates of a Hamiltonian transform as irreps of the symmetry
group of the Hamiltonian.

Which means

The eigenstates transform under the symmetry, and the transformation matrix is exactly given by
the representation matrix in the corresponding irrep.

Let’s see how this conclusion applies to our case of lattice translation symmetry.

A consequence of translation symmetry is that, every eigenstate of the electron corresponds to an
irrep of the translation symmetry labeled by k. That is, the wave function Ψ(r) transforms under
translation as

T (a)Ψ(r) = eikaΨ(r) (9)

It can be shown that the wave function takes the form

Ψ(r) = eikru(r) (10)

where r labels positions on the ring and u(r) is a periodic function with period a. That is u(r) is
invariant under translation along the lattice. Let’s check how the total wavefunction transforms
under translation symmetry

T (a)Ψ(r) = Ψ(r + a) = eik(r+a)u(r + a) = eikaeikru(r + a) = eikaΨ(r) (11)

That is, Ψ(r) indeed forms a 1D rep of the translation symmetry labeled by k, as we would have
expected.

Now let’s move on to two dimension and consider first the square lattice. Imagine a square lattice
on the surface of a torus with periodic boundary conditions in both directions. We have translation
symmetry in both x and y direction and it forms a CNx ×CNy group. The irreps of the CNx ×CNy

group is labeled by two integers nx and ny and following previous argument we can see that the
wave function of each eigenstate takes the form

Ψ(~r) = ei(kxrx+kyry)u(~r) = ei
~k·~ru(~r) (12)

where u(~r) is invariant under translation in both directions and kx = 2πnx
Nxax

, ky =
2πny

Nyay
gives the

crystal momentum of the electron in x and y directions (when multiplied with ~).

This result can be generalized to other lattices in 2D and 3D and is summarized by Bloch’s theorem:
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The energy eigenstates for an electron in a crystal takes the form

Ψ(~r) = ei
~k·~ru(~r) (13)

where u(~r) is a periodic function with the same period as the lattice, ~~k is the crystal momentum of
the electron and ~k takes value in a so-called ’Brillouin zone’. In 1D, the Brilliouin zone is [−π

a ,
π
a ].

In 2D with square lattice, the Brillouin zone is a rectangle region between [− π
ax
, πax ] in the kx

direction and [− π
ay
, πay ] in the ky direction. For more complicated lattices, the Brillouin zone takes

more complicated shapes.

Ψ(~r) of this form is called a Bloch wave.

Each eigenstate will have a corresponding energy given by the Hamiltonian. Imagine that we move
along the k axis in the 1D Brillouin zone. As k is densely populated in the Brillouin zone, we
expect the energy to change with k in a smooth way. If we plot energy versus k, we get a smooth
line, forming a so called energy band. Moreover, there can be multiple states with the same k but
different energy. That means we can have multiple bands in the crystal. If we plot them all out,
we get the band structure of the crystal. This can be done for 2D and 3D lattice as well, although
it is harder to draw. The band structure is the most important notion in solid state physics.

Figure 1: An example of a 1D band structure.
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