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6 Applications of finite groups

6.5 Perturbation and degeneracy splitting

Now suppose that the Hamiltonian of the system is perturbed by a term V . How does the spectrum
change? In particular, we want to know if the degeneracy structure of the system changes. This
will depend on the symmetry property of V . The short answer is: if V has the same symmetry as
H, then the degeneracy required by symmetry is preserved while the accidental degeneracies may
be lifted (removed); on the other hand, if V breaks some of the symmetries of H, then it is possible
to lift non-accidental degeneracies as well. (Recall that non-accidental degeneracies exist among
different basis states of the same irrep while accidental degeneracies exist among different irreps
(which may or may not be equivalent).)

This can be shown by considering the symmetry of the perturbed Hamiltonian H ′ = H + V . If
V has the same symmetry as H, then so does H ′. Our previous argument regarding the eigen
spectrum of H still applies. Therefore, inequivalent irreps of D(g) remain separate under H ′. It
is possible that V mix equivalent irreps which originally belong to different eigen sectors of H.
This has two consequences. First, it can change the linear combination of the irreps that form
eigen sectors of the Hamiltonian; Secondly, it can change the eigenvalues of the sectors and thereby
remove or introduce accidental degeneracy. However, the degeneracy required by symmetry with
higher dimensional irreps remains intact.

On the other hand, if V has a smaller symmetry than H, then the symmetry of H ′ will generally be
a subgroup of that of H (G′ ⊂ G). In this case, some higher dimensional irreps of G can break down
to the direct sum of multiple irreps of G′, therefore the degeneracy is not protected by symmetry
any more and can be lifted.

Suppose that we start with an H with D3 symmetry and add a perturbation V with only the
subgroup Z3 symmetry. H ′ has only Z3 symmetry. The symmetry representation of D3 naturally
restricts to a representation of Z3 by only keeping the representation matrices in the Z3 subgroup.
Under this restriction, each irreducible block in the representation becomes a representation of Z3,
but not necessarily an irreducible one. The trivial irrep of D3 restricts to the trivial irrep of Z3. The
1D nontrivial irrep of D3 also restricts to the trivial irrep of Z3. The 2D irrep of D3 on the other
hand is reducible when restricted to Z3. When the character of the 2D irrep is restricted to the
Z3 subgroup, it becomes χ = {2,−1,−1}, which can be decomposed into two 1D irreps of Z3 with
character {1, ω, ω2} and {1, ω2, ω}. Therefore, the 2D irrep of D3 splits into two inequivalent irreps
of Z3. On the spectrum side, all the trivial irreps of Z3 can remix and form a set of (generically
nondegenerate) eigenstates. The degeneracy associated with the 2D irreps are now completely
lifted, and each eigenstate corresponds to a nontrivial irrep of Z3.
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6.6 Crystal tensor properties

6.6.1 Point Group Symmetries

A crystal can have more symmetries than just translation symmetry. Let’s consider some popular
lattices and find out their symmetry.

The square lattice is invariant under the following transformations: a. rotation by π/2 (yellow
arrow around the yellow dot rotation center); b. reflection (with respect to the blue axises); c.
translation by unit distance in x or y directions (red arrows).

The triangular lattice is invariant under the following transformations: a. rotation by π/3 around
lattice points and rotation by 2π/3 around plaquette center; b. reflection (with respect to the blue
axises); c. translation by unit distance in the two directions specified by red arrows.

The cubic lattice in 3D is invariant under: a. translation by unit distance in i, j, k directions
(red arrows); b. reflection with respect to the ij, jk, ki planes; c. rotation around i, j, k axis by
π/2; d. rotation around the diagonal axis of the cube by 2π/3; e. inversion (i → −i, j → −j,
k → −k) centered at any lattice site. (Note that inversion in 3D is not equivalent to a rotation
transformation.)

The symmetry transformations of an infinite lattice falls into two types: point group symmetry,
transformations which keep at least one point fixed; translation symmetry, transformation which
moves every point in the same direction by the same amount. Put together, they form the full
space group symmetry of the lattice.
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According to their symmetries, 2D lattices are classified into five Bravais lattices, including oblique,
rectangular, centered rectangular, hexagonal, and square lattices. 3D lattices are classified into 14
Bravais lattices, including for example primitive cubic, body-centered cubic, face-centered cubic,
hexagonal lattice, etc.

Moreover, each point in the lattice can have a structure of its own instead of just being a rotationally
invariant ball. For example, each point in the lattice can host a molecule with internal structures.
This will in general reduce the symmetry of the system and further distinguish among the lattices.
Taking this into consideration, there are 230 different lattices in 3D.

6.6.2 Operators forming a representation of symmetry

Before we talk about tensor properties of crystals, we need to talk about in quantum mechanics how
operators transform under symmetry and how operators can form a representation of the symmetry
group.

In a Hilbert space, the state of the system is given by a wave function |ψ〉. Suppose that symmetries
of group G act on the Hilbert space as D(g). The wave function transforms under symmetry as
|ψ〉 → D(g)|ψ〉. Suppose that O is an operator acting on the Hilbert space. For example, O can
be a Hermitian operator corresponding to some measurable quantity. As a linear operator on the
Hilbert space, O takes the form O =

∑
ij Oij |ψi〉〈ψj |. Therefore, under symmetry transformation,

O transforms as O → D(g)OD†(g).

For example, translation by a in the x direction is implemented by eipxa, where px is the momentum
operator in the x direction. This can be seen from the following relation

eipxaxe−ipxa = x+ a (1)

This relation can be proven as follows: define f(a) ≡ eipxaxe−ipxa.

d

da
f(a) = eipxaipxxe

−ipxa + eipxa(−ixpx)e−ipxa = eipxai[px, x]e−ipxa = 1 (2)

Therefore,
f(a) = f(0) + a (3)
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Similarly, rotation around the z direction is implemented by eiLzθ where Lz is the angular mo-
mentum operator in the z direction, Lz = xpy − ypx. How do the operators x and y transform
under such rotations? Intuitively, x and y should rotate into some linear combinations of the two
inside the two dimensional space spanned by themselves. We can check that this is indeed true. In
particular, if we define

sx(θ) ≡ eiLzθxe−iLzθ, sy(θ) ≡ eiLzθye−iLzθ (4)

then
d

dθ
sx(θ) = eiLzθi[Lz, x]e−iLzθ = −sy(θ),

d

dθ
sy(θ) = eiLzθi[Lz, y]e−iLzθ = sx(θ) (5)

from which we see
s(x) = cos θx− sin θy, s(y) = cos θy + sin θx (6)

In general, if a set of operators {O1, ..., OM} transform under symmetry D(g), g ∈ G, as

D(g)OmD
†(g) =

∑
m′

E(g)mm′Om′ (7)

then we say that the operators form a representation of the symmetry given by E(g). Therefore, x

and y form a 2-dimensional representation of the circle group given by E(θ) =

(
cos θ sin θ
− sin θ cos θ

)
.
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