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6 Applications of finite groups

6.6 Crystal tensor properties

6.6.3 Constrains on macroscopic measurements

Now we can talk about how the macroscopic properties of a crystal is constrained by the underlying
lattice symmetry. To understand how such a constraint works, we need to distinguish between scalar
properties, vector properties and tensor properties.

Some properties of a crystal is just described by a number. For example, the mass, temperature,
specific heat or free energy of the system.

Some properties of a crystal is a three dimensional vector. For example, the electric polarization P
with three components (Px, Py, Pz), and the current density (Jx, Jy, Jz). The vectors have a single
index, labeling the three dimensions of space. We say that a vector is a tensor of rank 1.

Some properties are described by tensors, i.e. quantities with more than one index. For example,
the conductivity of a material is in general a two-index tensor. Usually, we think of conductivity as
a scalar which measures the proportionality constant between current density J and applied electric
field E. Both J and E are three dimensional vectors. Conductivity defined as the ratio between two
vectors is a scalar only when J and E points in the same direction and their ratio is independent
of the direction. But this is not necessarily true in a material. There are materials whose induced
current can lie in a different direction than the applied electric field. Then to describe conductivity,
we need to specify the proportionality constant between current density in every direction (x, y,
z) and applied electric field in every direction (x, y, z). Therefore, the conductivity becomes a two
index tensor

σij = Ji/Ej , i, j = x, y, z (1)

In the most general case, all nine entries in the tensor can be nonzero. Tensors with two indices
are of rank 2.

Some other useful example of two index tensor properties are the stress and strain. The strain tensor
describes the deformation (change in shape) of a body with respect to its original configuration.
Suppose that the original position of each particle is given by (rx, ry, rz) and after deformation
each particle moves by (δx, δy, δz). The displacement of each particle can be different, therefore,
(δx, δy, δz) is in general a function of (rx, ry, rz). If (δx, δy, δz) is independent of (rx, ry, rz), then
the deformation amounts to a global translation of the body and we are not interested in that. We
are interested in the case where every point has different displacement and hence the whole body
deforms. Therefore, the strain tensor is defined as

εij =
∂δi
∂rj

, i, j = x, y, z (2)

The stress tensor on the other hand, is defined as the force acting in i direction on a unit surface
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in the j direction

σij =
∂Fi
∂Sj

, i, j = x, y, z (3)

Combining these tensors, we can get tensors of even higher rank. For example, stress can induce
electric polarization in piezoelectric materials. When the stress is small, the induced polarization
has a linear relation to the stress. Their proportionality constant, called the piezoelectric modulus,
is a rank three tensor and is defined as

dijk =
∂Pi
∂σjk

, i, j, k = x, y, z (4)

Similarly, in an elastic material under small stress, strain and stress have a linear relation and their
proportionality constant, called the Young’s modulus, is a rank four tensor and is defined as

λijkl =
∂σij
∂εkl

, i, j, k, l = x, y, z. (5)

As these properties depends on the coordinate system x, y, z, if we rotate the coordinate system,
they should transform accordingly. In particular, in a quantum mechanical system at a thermal
equilibrium state of temperature T , the measured quantity is given by

< O >= Tr(e−H/kBTO) (6)

If the Hamiltonian of the system is invariant under certain symmetry, D(g)H = HD(g), then the
measured quantity should transform according to how O transforms.

In particular, suppose that we do a transformation Qij on the coordinate system. Writing Q

in matrix form, for inversion, Q =

−1 0 0
0 −1 0
0 0 −1

; for reflection across the y − z plane Q =−1 0 0
0 1 0
0 0 1

; for rotation around z axis, Q =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

.

Under this transformation, the scalar property remains invariant. The vector properties transform
as

D(Q)PiD
−1(Q) =

∑
i′

Q−1ii′ Pi′ (7)

Note that D(Q) acts on the Hilbert space of the physical system while Q is a three dimensional
linear transformation acting on three components of the vector.

The rank two tensor properties transform as

σ′ij =
∑
i′j′

Q−1ii′ Q
−1
jj′σi′j′ (8)

The rank three tensor properties transform as

d′ijk =
∑
i′j′k′

Q−1ii′ Q
−1
jj′Q

−1
kk′di′j′k′ (9)
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so on and so forth.

Now if the system has certain symmetry, it remains invariant under certain transformations of the
coordinate systems. Therefore, all the tensor properties should remain invariant. This puts a strong
constrain on which component of the tensor can be nonzero. Consider the following examples.

1. Vector property in systems with inversion symmetry.

Suppose that the system has certain vector property Pi, i = x, y, z. Under inversion Q =−1 0 0
0 −1 0
0 0 −1

, P → −P . Therefore, systems with inversion symmetry, like cubic lattice, must

have vanishing vector properties. Similarly, in systems with inversion symmetry, all tensor proper-
ties of odd rank must vanish. On the other hand, inversion symmetry does not constrain even rank
tensors in any way.

2. Vector property in systems with rotation symmetry.

Suppose that the system has certain vector property Pi, i = x, y, z. Under rotation the vector will
be rotated to a different direction unless it points along the rotation axis. Therefore, in systems
with rotation symmetry around a single axis, like the hexagonal lattice or the tetragonal lattice, it is
possible to have nonzero vector property (along the axis), while in systems with rotation symmetry
around multiple axes, like the cubic lattice, all the vector properties have to be zero.

3. Rank two tensor property in cubic lattice.

Suppose that we have a rank two tensor property. Let’s try to figure out how many independent
degrees of freedom there are of this property in a cubic lattice. A rank two tensor contains nine
entries, so originally there are nine degrees of freedom. A large class of these tensors, including
stress and strain, are symmetric (under transpose). That is,

σij = σji (10)

This is due to physics considerations, not symmetry, and it reduces the number of DOF to six. We
are left with σ11, σ12,σ13, σ22, σ23,σ33. Now let’s use the symmetry properties of the cubic lattice
to further reduce the number of DOF.

Inversion symmetry of the cubic lattice does not affect rank two tensors, but reflection and rotation
does. Take reflection across x− y plane for example. The transformation is

Q = Q−1 =

1 0 0
0 1 0
0 0 −1

 (11)

Under this transformation
σ13 → −σ13, σ23 → −σ23 (12)

while the other components remain invariant. Therefore, due to reflection symmetry across x − y
plane, σ13 = σ23 = 0. Similarly, using reflection symmetry across y − z plane, we get σ12 = 0.
Therefore, we are only left with the diagonal elements σ11, σ22, σ33.

Now we use the rotation symmetry around the diagonal axis of the cube. Under a 2π/3 rotation
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in this direction, x, y, z axes are cyclicly permuted. Therefore,

σ11 → σ22 → σ33 (13)

and have to be equal. That is, we can conclude that any rank two tensor property in a cubic lattice
reduces to a scalar quantity.

7 Continuous Group

Now we are going to move on to continuous groups. We have seen the simplest example of a
continuous group, the circle group. Let’s first review how that works and see how the idea can be
generalized to more complicated groups.

7.1 SO(2)

Instead of saying “the circle group”, we are going to call it by a more popular name: the SO(2)
group. It is a matrix group of two dimensional orthogonal matrices with +1 determinant. It
represents rotation of a two dimensional vector space and is represented on this two dimensional
space as

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(14)

θ ∈ [0, 2π) and the group elements compose as

R(θ1)R(θ2) = R(θ1 + θ2 mod 2π) (15)

Notice that here we are using a particular representation to define the group, but the group is
a more general abstract notion. In particular the group can have other kinds of representations.
This 2D representation is special though in that it is faithful. Other representations may not be
faithful. When we say SO(2), in most cases it should be clear from the context whether we are
talking about the abstract group or this particular two dimensional representation.

The continuity of the group elements comes from the continuity of the parameter θ. Moreover, the
group has a nice property called compact, which roughly means that the parameter takes value in
the bounded region of [0, 2π).

This is an abelian group and the 2D representation actually decomposes into two 1D irreps through

unitary transformation S = 1√
2

(
1 i
1 −i

)

SR(θ)S−1 =

(
eiθ 0
0 e−iθ

)
(16)

Of course there are an infinite number of irreps given by {einθ}, n ∈ Z.

Because all irreps are 1D, the character of the representation is just given by the irrep itself.

χ(n) = einθ, θ ∈ [0, 2π) (17)
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These characters satisfy an orthogonality condition similar to the finite group case. However,
instead of summing over individual group elements, we need to perform an integration over them.

〈χ(n), χ(n′)〉 =
1

2π

∫ 2π

0
dθe−inθein

′θ = δnn′ (18)

Notice that I have chosen a normalization for the inner product of characters so that each character
have length 1.

We can use this orthogonality condition of characters in the same way as we have used it for finite
groups. For example, we can check that the 2D rep given above decomposes into two 1D irreps.
The character of the 2D irrep

χ = 2 cos θ = eiθ + e−iθ (19)

Therefore
R(θ) = D(1)(θ)⊕D(−1)(θ) (20)

as we have seen above.

The direct product of irreps goes as

D(n) ⊗D(n′) = D(n+n′) (21)

Therefore, under direct product, the irreps form a group which is isomorphic to the group of
integers.

For finite groups, a useful notion is the generator of the group. Once we have identified the
generators of a group and the relations between them, we knows which group it is. For continuous
group, can we similarly find such generators? For the SO(2) group, intuition says that the generator
of the group is an infinitesimal rotation by a very small angle θ. But of course, no θ is small enough,
we can always find a smaller one. What we define instead, is an infinitesimal generator

X ≡ idR(θ)

dθ

∣∣∣
θ=0

(22)

for any representation R. Any group elements in the continuous group can then be obtained by
taking the exponential of this infinitesimal generator.

R(θ) = e−iθX (23)

The exponential of an operator is defined as e−iθX =
∑∞

k=0
(−iθX)k

k! . If we can diagonalize X into
V XV −1 = D, where D = diag(d1, d2, ...), then e−iθX = V −1diag(e−iθd1 , e−iθd2 , ...)V .

For the irrep labeled by n, D(n)(θ) = einθ, X(n) = −n. For the 2D orthogonal representation,

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, X =

(
0 −i
i 0

)
. Note that X is Hermitian because R is unitary.

In physics, the Hermitian generator X is sometimes identified as the orbital angular momentum
Jz around the rotation axis z (e.g. for electron orbits around a nucleus). Suppose that a wave
function forms an irrep of the SO(2) group. That is,

R(θ)|ψ〉 = e−inθ|ψ〉 (24)

The state is said to have orbital angular momentum Jz = n. In other situations, X maybe identified
with the number of particles N in the system (e.g. for electrons in metals or insulators) and in this
particular state N = n.
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