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7 Continuous Group

7.2 SO(3)

Irreps

Let’s see how this looks like in some simple cases.

First, consider the case of j = 0. This irrep is one dimensional and the operators are all represented
as numbers

Lz = 0, Lx = 0, Ly = 0, L2 = 0 (1)

If we exponentiate them, the rotation operators we get are all trivial

R~n(θ) = e−iθ(nxLx+nyLy+nzLz) = 1 (2)

Next, let’s move on to the case of j = 1. This irrep is three dimensional with basis states |1〉, |0〉,
| − 1〉. In matrix form, Lx, Ly, Lz and L2 read

Lz =

1 0 0
0 0 0
0 0 −1

 , Lx =
1

2

 0
√

2 0√
2 0

√
2

0
√

2 0

 , Ly =
i

2

 0 −
√

2 0√
2 0 −

√
2

0
√

2 0

 , L2 =

2 0 0
0 2 0
0 0 2


(3)

We know of another three dimensional representation of SO(3) which is given by the three di-
mensional special orthogonal matrices. How are these two representations related? If we list the
generators of the special orthogonal matrices, we can see that

X1 =

0 0 0
0 0 −i
0 i 0

 , X2 =

 0 0 i
0 0 0
−i 0 0

 , X3 =

0 −i 0
i 0 0
0 0 0

 (4)

This is related to the Lx, Ly, Lz given above by a basis transformation

S =
1√
2

1 −i 0

0 0
√

2
1 i 0

 (5)

Therefore, the two three dimensional representations we have seen so far, are equivalent to each
other.

Similarly, we can build up representations of five, seven, ... dimensions. Each of them correspond to
a different irrep of SO(3). That is, SO(3) has one equivalence class of irrep in every odd dimension,
labeled by integer j.

Characters
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For an irrep labeled by j as derived previously, we can find the character of a conjugacy class
labeled by θ by taking the trace of Rjz(θ). In particular

Jz = diag(j, j − 1, ...,−j) (6)

Therefore
Rjz(θ) = diag(eijθ, ei(j−1)θ, ..., e−ijθ) (7)

and the character is

χ(j)(θ) =
sin(j + 1/2)θ

sin(θ/2)
(8)

(take j = 1 and compare it to the case of the three dimensional special orthogonal representation.)

Are these characters orthogonal to each other? In order to answer the question, we need to define
an integration for the group, which integrates over its parameter space. The parameter space of
SO(3) is highly nontrivial. First, we can specify every group element by a rotation axis direction
~n and an angle θ. ~n is a unit vector and we can take it to correspond to points on the surface of
a unit ball. θ takes value from −π to π and we can take it to correspond to the radial direction
of the solid ball. However, the parameter space is not exactly the ball because a π rotation is the
same as a −π rotation. Therefore, the two ends of the same diameter should be identified. A solid
ball with this identification gives the parameter space of SO(3). The geometry and topology of
this space is too complicated to discuss here. Instead I will just claim that the integration we want
to use is ∫ 2π

0

dθ

2π
(1− cos(θ)) (9)

and the characters are orthogonal under this integration

〈χ(j), χ(j′)〉 =

∫ 2π

0

dθ

2π
(1− cos(θ))

sin(j + 1/2)θ

sin(θ/2)

sin(j′ + 1/2)θ

sin(θ/2)
= δjj′ (10)

7.3 SU(2): the special unitary matrices of dimension two

Before I move on to talk about how the irreps of SO(3) combine with each other (in direct product),
I would like to digress and talk about SU(2) first. SU(2) is very similar to SO(3) but also different
in very important ways. It turns out that the irreps of SO(3) is a subset of irreps of SU(2) and
when physicist study ‘addition of angular momentum’, what they really do is to study the direct
product of irreps of SU(2) instead of SO(3). So let’s first understand what SU(2) is.

Instead of starting from the definition of SU(2), let’s start by considering the three Pauli matrices

σx =
1

2

(
0 1
1 0

)
, σy =

1

2

(
0 −i
i 0

)
, σz =

1

2

(
1 0
0 −1

)
(11)

It is easy to check that (1) they are Hermitian finite dimensional matrices (2) they satisfy the com-
mutation rule [σa, σb] = iεabcσc. It seems that they fulfill the requirement of being the infinitesimal
generator of SO(3). Actually, not quite. You may notice that once exponentiated, they do not
quite give rise to the SO(3) group. In particular, consider the 2π rotation around a particular axis,
say z

R(1/2)
z (2π) = e−i2πσz = −I2 (12)

That is, 2π rotation is not exactly doing nothing. Instead it adds a global phase factor of −1.
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Therefore, the group generated by σx, σy, and σz is not quite the SO(3) group, in which doing 2π
rotation should be the same as doing nothing. Instead, it generates the SU(2) group: the group of
special unitary matrices of dimension two.

Let’s make linear superpositions of the infinitesimal generators and take their exponential.

R~n(θ) = e−iθσ~n = e−iθ(nxσx+nyσy+nzσz) (13)

Because (σ~n)2 = (nxσx + nyσy + nzσz)
2 = I2/4, we have

R~n(θ) =

∞∑
k=0

(−iθσ~n)k

k!
=
∑

even k

(−iθ/2)k

k!
+
∑

odd k

(−iθ/2)k

k!
2σ~n = cos

(
θ

2

)
− i sin

(
θ

2

)
2σ~n (14)

This represents all possible 2× 2 unitary matrices with determinant 1. (homework)

Although we started from three generators with the same commutation relation as those for SO(3),
the major difference between SU(2) and SO(3) is that the parameter takes value in [0, 4π), not
[0, 2π). Only when θ = 4π does R~n(θ) equal identity.

While R~n(2π) is not equal to identity, it is proportional to identity. Therefore, it commutes with
all other group elements and generates the center of the group (recall the definition of the center),
which is a C2 group. As the center of a group is a normal subgroup as well, we can take the quotient
of SU(2) with respect to this C2 group and we recover the SO(3) group as the quotient group. We
say that SU(2) is a double cover of SO(3).

You may wonder why we care about SU(2) so much in physics. As it turns out, a very important
property of electrons (and other fundamental particles) is their internal spin. This is not related
to the orbital motion of the electron around a nucleus. Instead, it is something intrinsic to the
electron. People realized that electron spin lives in a two dimensional Hilbert space. We can choose
the basis state of this two dimensional Hilbert space as the eigenstates of σz.

σz

∣∣∣∣12
〉

=
1

2

∣∣∣∣12
〉
, σz

∣∣∣∣−1

2

〉
= −1

2

∣∣∣∣−1

2

〉
(15)

The raising and lowering operator maps between the two

σ+ = σx + iσy =

(
0 1
0 0

)
, σ− = σx − iσy =

(
0 0
1 0

)
, σ+

∣∣∣∣−1

2

〉
=

∣∣∣∣12
〉
, σ−

∣∣∣∣12
〉

=

∣∣∣∣−1

2

〉
(16)

This is exactly the same relation as those given in the previous lecture if we set j = 1
2 . Therefore,

this spin 1/2 behaves in every way like its integer angular momentum cousins, with one difference.
Under spatial rotation around axis ~n through angle θ, it transforms as

R~n(θ) = e−iθσ~n = e−iθ(nxσx+nyσy+nzσz) (17)

which does not form a representation of the SO(3) group but the SU(2) group. This is a spe-
cial property of quantum mechanics. That is, we can have quantum mechanical wave functions
transforming under symmetry operations up to a phase factor. Here the phase factor shows up as
R~n(2π) = −I. This is ok in quantum mechanics because global phase factor is not measurable. It
is in some sense a redundancy of the wave function representation, but through this example we
can see that this redundancy is absolutely crucial because without it, there cannot be a spin 1/2
representation of rotation symmetry!
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In fact, SU(2) has other irreducible representations as well. All the irreps of SO(3) are irreps
of SU(2), even though they are not quite faithful. Moreover, SU(2) has one irrep in every even
dimension which can be obtained in exactly the same way as the odd dimensional irreps for SO(3)
but starting from half integer j, j = 1/2, 3/2, .... Of course, only the odd dimension irreps are
irreps of SO(3). The even dimension ones are irreps of SO(3) only up to a phase factor, and we
say that they are projective representations of SO(3).

In physics, people often mix the notion of SO(3) and SU(2). It happens because in quantum
mechanics both projective and nonprojective representations are allowed and they both show up in
physical situations (like electron spin and orbital angular momentum) and can interact with each
other.
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