
Physics 129a Lecture 18

9 Lorentz Group and Special Relativity

9.1 Lorentz Transformations

What kind of Λ satisfies the above condition?

First, any spatial rotation involving x̃1, x̃2, x̃3 keeps the length of the four vector invariant. There-
fore, the spatial rotation transformations ∈ SO(3) forms a subgroup of the Lorentz group. The
transformation matrices take the form

Λr~n(θ) =


1 0 0 0
0
0 R~n(θ)
0

 (1)

where R~n(θ) is the three dimensional special orthogonal matrix representing the spatial rotation.
This subgroup of transformations is generated by

X1 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , X2 =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 , X3 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 (2)

A different kind of Lorentz transformations which do involve time are the ‘boosts’. Boost in the x
direction gives rise to the transformation

Λbx(v) =


γ −γv/c 0 0

−γv/c γ 0 0
0 0 1 0
0 0 0 1

 (3)

where γ = c√
c2−v2 . If we define γ = cosh ζ = eζ+e−ζ

2 , so that tanh ζ = sinh ζ
cosh ζ = v

c , then Λbx(v) can

be re-written as

Λbx(ζ) =


cosh ζ − sinh ζ 0 0
− sinh ζ cosh ζ 0 0

0 0 1 0
0 0 0 1

 (4)

One can explicitly check that
(
Λbx(ζ)

)T
gΛbx(ζ) = g.

The infinitesimal generator for x direction boost is

Y1 = i
dΛbx(ζ)

dζ

∣∣∣
ζ=0

=


0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0

 (5)

1



By exponentiating Y1, we can recover Λbx(ζ)

Λbx(ζ) = e−iζY1 (6)

However, notice one important difference with the generator for SO(3): ζ is not bounded. As v
approaches c, ζ approaches +∞. Therefore, the Lorentz group SO(3, 1) is not compact. This has
a series of consequences. One of them being that the finite dimensional representations of SO(3, 1)
are no longer unitary.

It might seem that if we choose the parameter to be v/c which takes value between 0 and 1, then
the parameter space would be compact. But v/c is not the right parameter to choose because if we
define infinitesimal generator Y1 with respect to v/c, we get the same Y1 (verify this). But if we
then try to recover the group elements by taking e−iv/cY1 , we do not recover all the group elements.

Similarly, boosts in y and z directions are generated by

Y2 =


0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0

 , Y3 =


0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0

 (7)

Boosts in an arbitrary direction ~n can be obtained first by rotating ~n to x axis, applying the boost
in x direction and then rotating back.

In general, an arbitrary Lorentz transformation contains both spatial rotation and boost. The
whole group is generated from X1, X2, X3 and Y1, Y2, Y3. The Lie algebra of SO(3, 1) is a six
dimensional real vector space with commutators

[Xa, Xb] = iεabcXc, [Xa, Yb] = iεabcYc, [Ya, Yb] = −iεabcXc (8)

Comments:

(1) While X1, X2, X3 are closed under commutation, Y1, Y2, Y3 are not. Therefore, the boosts do
not form a subgroup.

(2) While X1, X2, X3 are Hermitian, Y1, Y2, Y3 are anti-Hermitian. Therefore, the representation
is not unitary (the boost transformations are not unitary).

(3) The first and second commutation relation says that X1, X2, X3 transform as a vector under
SO(3), so do Y1, Y2, Y3.

(4) We can make linear combinations between X and Y

X(±)
a =

1

2
(Xa ± iYa) (9)

In terms of X±a , the commutation relations become

[X(+)
a , X

(+)
b ] = iεabcX

(+)
c , [X(−)

a , X
(−)
b ] = iεabcX

(−)
c , [X(+)

a , X
(−)
b ] = 0 (10)

That is, the set of six generators break up into two subsets, such that each subset is equivalent to
the Lie algebra of SU(2) and the two subsets are independent of each other.
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9.2 Irreducible representations

The four dimensional matrices Λ provide one possible representation of SO(3, 1) while the group is
abstractly defined as that satisfying the same composition rule as the Λ’s. In terms of Lie algebra,
the group is defined as that with a six dimensional Lie algebra, satisfying the commutation relation

[Xa, Xb] = iεabcXc, [Xa, Yb] = iεabcYc, [Ya, Yb] = −iεabcXc (11)

or
[X(+)

a , X
(+)
b ] = iεabcX

(+)
c , [X(−)

a , X
(−)
b ] = iεabcX

(−)
c , [X(+)

a , X
(−)
b ] = 0 (12)

Now we can try to see what irreducible representations SO(3, 1) have. Following our analysis of
SO(3), in order to find irreps for a Lie group, we can try to find the irreps for its Lie algebra, but
with the danger that we get the irrep of the covering group (SU(2) for SO(3)). Things work in a
very similar way for SO(3, 1).

We see that the Lie algebra of SO(3, 1) contains two SU(2) part. Therefore, its irrep can be labelled
by (j1, j2), where j1, j2 are integer or half-integer. The representation is then (2j1 + 1)(2j2 + 1)
dimensional. The generators are

X(+)
a = J j1a ⊗ I2j2+1, X

(−)
a = I2j1+1 ⊗ J j2a (13)

From which we get

Xa = J j1a ⊗ I2j2+1 + I2j1+1 ⊗ J j2a , Ya = −i(J j1a ⊗ I2j2+1 − I2j1+1 ⊗ J j2a ) (14)

If we then take the exponential, we can recover the group (or its covering group).

Let’s see some example irreps.

(1) j1 = 0, j2 = 0

This is the trivial representation. It is one dimensional, with all the generators being 0 and all the
group elements being represented by 1. In quantum field theory, this representation is carried by a
relativistic scalar field (e.g. the Higgs field).

(2) j1 = 1/2, j2 = 0

This is called a spinor representation. It is two dimensional.

X+
1 = σx, X

+
2 = σy, X

+
3 = σz, X

−
1 = 0, X−2 = 0, X−3 = 0 (15)

Correspondingly

X1 = σx, X2 = σy, X3 = σz, Y1 = −iσx, Y2 = −iσy, Y3 = −iσz (16)

The Lorentz transformations are then parameterized by six real numbers θ1, θ2, θ3, φ1, φ2, φ3

Λ(~θ, ~φ) = ei(
~θ· ~X+~φ·~Y ) = ei(

~θ−i~φ)·~σ (17)

Note that this is different from the SU(2) group which contains matrices ei
~θ·~σ. In fact, the set of

matrices generated are the group of special (determinant 1) linear (invertible) matrices of dimension
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2, SL(2,C). SL(2,C) is a covering group of the SO(3, 1) group as 2π spatial rotation results in −I
instead of I.

In quantum field theory, this representation is carried by the Weyl fermion.

(3) j1 = 0, j2 = 1/2

This is another spinor representation with generators

X1 = σx, X2 = σy, X3 = σz, Y1 = iσx, Y2 = iσy, Y3 = iσz (18)

This is inequivalent to the previous representation because they cannot be related by a basis
transformation.

In quantum field theory, the direct sum of the j1 = 1/2, j2 = 0 representation and the j1 = 0,
j2 = 1/2 representation is carried by the Dirac fermion.

(4) j1 = 1/2, j2 = 1/2

This is a four dimensional representation. Actually, it is exactly the four dimensional represen-
tation which we used to define SO(3, 1). That is, the space time four vector transforms as this
representation.

10 Group Theory and Standard Model

Group theory played a big role in the development of the Standard model, which explains the origin
of all fundamental particles we see in nature. In order to understand how that works, we need to
learn about a new Lie group: SU(3).

10.1 SU(3) and more about Lie groups

SU(3) is the group of special (detU = 1) unitary (UU † = I) matrices of dimension three. What are
the generators of SU(3)? If we want three dimensional matrices X such that U = eiθX is unitary
(eigenvalues of absolute value 1), then X need to be Hermitian (real eigenvalue). Moreover, if
U has determinant 1, X has to be traceless. Therefore, the generators of SU(3) are the set of
traceless Hermitian matrices of dimension 3. Let’s count how many independent parameters we
need to characterize this set of matrices (what is the dimension of the Lie algebra). 3× 3 complex
matrices contains 18 real parameters. If it is to be Hermitian, then the number of parameters
reduces by a half to 9. If we further impose traceless-ness, then the number of parameter reduces
to 8. Therefore, the generator of SU(3) forms an 8 dimensional real vector space.

We can choose a basis for this eight dimensional vector space as

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 (19)
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λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 (20)

They are called the Gell-Mann matrices. Among them λ3 and λ8 are diagonal and the other six
correspond to the off-diagonal part of the Hermitian matrices. If we recall the structure of the Lie
algebra of SU(2), λ3 and λ8 are similar to Jz and others are similar to Jx and Jy.

By convention, we define

Ta =
1

2
λa (21)

Note that T1, T2 and T3 are exactly the σx, σy and σz operators acting on the first two dimensions.
Therefore, they form a su(2) sub-algebra and generate an SU(2) subgroup of SU(3).

The eight basis infinitesimal generators are ortho-normal in the sense that

Tr(TaTb) =
1

2
δab (22)

From the Ta’s we can determine the commutator of the Lie algebra

[Ta, Tb] = ifabcTc (23)

where fabc is called the structure constant of the group and is completely antisymmetric with
respect to the exchange of any two indices. Recall for SU(2), the structure constant was εabc which
has a similar antisymmetric property.

The three dimensional special unitary matrices provide only one possible representation of SU(3).
This is called the fundamental representation. How to find the other representations? We can
proceed in a similar way as SU(2). Remember that for SU(2), what we did was

1. find the Casimir operator which commute with the whole algebra and use its eigenvalue to label
different representations

2. within each representation, use the eigenstates of Jz to label different basis states

3. define the raising and lowering operators J± to map from one basis state to another and determine
the largest and smallest Jz eigenvalue given j.

Let’s try to do something similar for SU(3). First, the su(3) algebra has two Casimir operators

C1 =

8∑
i=1

T 2
i , C2 =

∑
ijk

dijkTiTjTk (24)

where dijk can be obtained from the anti-commutation relation for the generators

{Ti, Tj} = TiTj + TjTi =
1

3
δij + dijkTk (25)

Direct calculation shows that C1 = 4
3 , C2 = 10

9 for the fundamental representation. In fact, the
value for C1 and C2 can be obtained from two integers p and q.

C1 =
1

3
(p2 + q3 + 3p+ 3q + pq), C2 =

1

18
(p− q)(3 + p+ 2q)(3 + q + 2p) (26)
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Therefore, instead of using C1 and C2 to label representations, we can use p and q and denote each
irrep as D(p, q). The fundamental representation is then labeled as D(1, 0).

Now we want to find a set of basis states for each irrep. Similar to SU(2), we can use the eigenstates
of T3 as basis states. In fact, because T8 commute with T3, we can use their common eigenstates
as basis states of the irrep. There are no other independent generator which commutes with both.
Of course, we can make other choices of generators to define basis states, but it can be shown that
different choices are all equivalent to each other and give the same result.

In a Lie algebra, the subset of commuting hermitian generators which is as large as possible is
called the Cartan subalgebra. We can choose a basis for this subalgebra Hi such that

Hi = H†i , [Hi, Hj ] = 0, T r(HiHj) = kDδij(kD is representation and normalization dependent)
(27)

The Hi, i = 1, ...,m, are called the Cartan generators and m is called the rank of the algebra.

The basis states of an irreducible representation can then be labeled by eigenvalues of Hi

Hi|p, q, ~µ〉 = µi|p, q, ~µ〉 (28)

In the case of fundamental representation of SU(3), we have three basis states labeled by (apart
from p = 1, q = 0)

~µ =

(
1

2
,

√
3

6

)
,

(
−1

2
,

√
3

6

)
,

(
0,−
√

3

3

)
(29)

The vectors ~µ are called the weight vectors of the algebra.

Now we can compose ‘raising’ and ‘lowering’ operators out of the other six generators of su(3).
Similar to su(2), the raising and lowering operators can be chosen to have only one off-diagonal
element. Define

E±1,0 =
1√
2

(T1 ± iT2) , E±1/2,±√3/2 =
1√
2

(T4 ± iT5) , E∓1/2,±√3/2 =
1√
2

(T6 ± iT7) (30)

Their subscript comes from their commutation relation with T3 and T8 and is related to how they
change the weight vector. For example

[T3, E±1,0] =
1√
2

([T3, T1]± i[T3, T2]) = (±1)E±1,0, [T8, E±1,0] =
1√
2

([T8, T1]± i[T8, T2]) = 0E±1,0

(31)
Correspondingly, application of E±1,0 to a state |~µ〉 maps it to state |~µ+ (±1, 0)〉. The vectors

~α = (±1, 0), (±1/2,±
√

3/2), (∓1/2,±
√

3/2) (32)

are called roots of the algebra. Moreover, we can find

[E~α, E−~α] = ~α · ~H (33)

which is a generalization of SU(2) relation [J+, J−] = 2Jz (if we rescale J+, J− by 1√
2
, we get

[J+, J−] = Jz). Note that while the weight vectors (red) are specific to each representation, the
root vectors (blue) are the same for all representations.

Now we can repeat the exercise of SU(2) and try to find the set of weight vectors which make up a
representation. In particular, for a particular p and q, we can start from a particular weight vector,
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change it using the raising and lowering operators. By calculating how the norm of the basis state
changes under such mapping (as a function of p, q, ~µ and ~α), we can find the ‘highest weight vector’
and the ‘lowest weight vector’ and hence the dimension of the representation and the action of all
generators in this basis. In this way, we can determine all irreducible representations of SU(3).
However, this calculation if too complicated and we are not going to do it explicitly.

Instead, we only mention here a few important representation of SU(3). It turns out the dimension
of a particular representation D(p, q) is

d(p, q) =
1

2
(p+ 1)(q + 1)(p+ q + 2). (34)

1. D(0, 0)

The dimension of this representation is 1 and this is the trivial representation. Every generator
is represented as 0 and every group element is represented as 1. Still this is a very important
representation in physics and it is called the singlet representation.

2. D(1, 0)

This is the 3 dimensional representation given by the special unitary matrices. It is called the
fundamental representation. We have discussed a lot about this representation above.

3. D(0, 1)

This is again 3 dimensional. The infinitesimal generators are related to those inD(1, 0) by T ′a = −T ∗a
and the group elements are related by complex conjugation.

4. D(1, 1)

This representation is 8 dimensional. This is an important representation called the adjoint repre-
sentation. The adjoint representation is a representation of a Lie group on the vector space of its Lie
algebra. The SU(3) group has 8 generators, therefore, its adjoint representation is 8 dimensional.
The adjoint representation is obtained by interpreting the commutation relation

[T̂a, Tb] = ifabcTc (35)
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as the action of T̂a on the basis Tb of the Lie algebra, mapping them to different linear combinations
of the basis. For example, because

[T1, T2] = iT3, [T1, T3] = −iT2, [T1, T4] = i
1

2
T7, [T1, T7] = −i1

2
T4, [T1, T5] = −i1

2
T6, [T1, T6] = i

1

2
T5

(36)
Therefore, T1 is represented by the 8× 8 matrix

T adjoint
1 =



0 0 0 0 0 0 0 0
0 0 −i 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 0 0 0 0 − i

2 0
0 0 0 0 0 i

2 0 0
0 0 0 0 − i

2 0 0 0
0 0 0 i

2 0 0 0 0
0 0 0 0 0 0 0 0


(37)

We can see that if we change the basis of the Lie algebra to that of the Carton operator and the
raising and lowering operator, the matrix corresponding to T3 and T8 becomes diagonal with the
diagonal vector being the root of the algebra.
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