
Physics 223b Homework 1 Due 04/26/17 by 5pm

1. Bogoliubov approach to superfluidity.

In this problem, we are going to derive the linear dispersion relation of a superfluid using Bo-
goliubov’s approach. Consider the Bose-Hubbard model in d-dimensional continuous space with
Hamiltonian

H =

∫
dx

(
−~2

2m
ψ†x∇2ψx

)
− µψ†xψx + U

∫
dx1dx2ρx1ρx2δ(x1 − x2) (1)

where ψ† and ψ are the boson creation and annihilation field operators satisfying [ψx, ψ
†
x′ ] =

δ(x− x′). ρx = ψ†xψx is the density operator at x.

1. Apply the Fourier transform to the boson field operators and define

ψk =
1√
V

∫
dxe−ikxψx, ψ†k =

1√
V

∫
dxeikxψ†x (2)

Use the relation
∫
dxe−ikx = V δk0 to determine the commutator [ψk, ψ

†
k′ ].

2. Rewrite the Hamiltonian using ψk and ψ†k.

3. Close to the ground state, the interaction term is dominated by terms involving ψk=0. Suppose
that in the ground state ψk=0 = γ. As long as |γ| � 1, we can treat ψ†k=0 as a number as
well and its value is γ∗.

The largest term in the interaction is then

ψ†k=0ψk=0ψ
†
k=0ψk=0 = |γ|4 (3)

The second largest terms are

4ψ†k=0ψk=0ψ
†
kψk + ψ†k=0ψ

†
k=0ψkψ−k + ψk=0ψk=0ψ

†
−kψ

†
k (4)

= 4|γ|2ψ†kψk + (γ2)∗ψkψ−k + γ2ψ†−kψ
†
k (5)

All other terms involve four nonzero momentums and are much smaller than the previous
two. We can ignore them if we stay close to the ground sate.

Combined with the kinetic and chemical potential term, the total Hamiltonian becomes

Hk=0 +
∑
k 6=0

(
~2k2

2m
− µ+ 4

U

V
|γ|2
)
ψ†kψk +

U

V
(γ2)∗ψ−kψk +

U

V
γ2ψ†kψ

†
−k (6)

For k 6= 0, recombine ψ†k and ψk into a new set of operators αk

αk = ukψk + vkψ
†
−k (7)

Find the set of parameters uk and vk such that

1. αk each represents a new boson mode so that [αk, α
†
k′ ] = δk,k′ , [αk, αk′ ] = 0.

2. The Hamiltonian can be diagonalized in this basis. That is, the Hamiltonian can be written
as H =

∑
k 6=0Ekα

†
kαk + E0.

Without loss of generality, you can take γ to be real.
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4. How does Ek depend on k when k is small? (choose the parameter so that Ek=0 = 0.)

2. Roton excitation in a superfluid.

A real superfluid is more complicated than a weakly interacting boson gas. On the one hand,
the interacting is pretty strong. Also the interaction can extend to a finite range, instead of
being just a delta function. Suppose that the interaction takes the form of a square function

V (r− r′) = Urect
(
x−x′
2r0

)
rect

(
y−y′
2r0

)
rect

(
z−z′
2r0

)
where

rect(t) = 1 when |t| < 1

2
, rect(t) = 0 when |t| > 1

2
(8)

Note that we have chosen a highly anisotropic form of the interaction potential to make sure the
following computation is tractable. The qualitative feature of our result will remain if we choose
an isotropic form of the interaction potential.

Let’s see how the excitation spectrum changes in the superfluid.

1. Repeat step 2 of the above problem to write the full Hamiltonian using the Fourier modes ψk

and ψ†k. Use the relation∫ ∞
−∞

rect(t) · e−i2πft dt =
sin(πf)

πf
= sinc(πf) (9)

2. Use the approximation that |ψk=0| = |γ| � ψk 6=0 to reduce the Hamiltonian to quadratic
form, as in step 3 of the above problem.

3. Repeat step 3 of the above problem and write the Hamiltonian as H =
∑

k 6=0Ekα
†
kαk + E0.

How does Ek depend on |k|?

4. Plot Ek along the kx direction for small |kx| and show that schematically it looks like the
following figure.

The excitations near k = 0 has a linear dispersion and are called the phonon excitation in
the superfluid. The excitations near |k| = k0 has a quadratic dispersion and are called the
roton excitation in the superfluid.

5. Find the critical velocity when superfluidity breaks down. That is, find the minimum velocity
when the viscosity of the fluid becomes nonzero. You may leave your result implicit, i.e. the
critical velocity is a function v = v(a) for dimensionless parameter a that solves the equation
f(a) = 0.
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3. Energy of a vortex – anti-vortex pair

In the lecture, we derived the relation

j =
~
m
ρ2∇θ (10)

1. Use the relation j = nv where n is the particle number density and v is average velocity to
find that

v =
~
m
∇θ (11)

2. In a rotationally invariant vortex with vorticity k, show that

v =
~k
mr

êφ (12)

where r is the distance from the vortex center and êφ is the unit vector in the angular direction.

3. The particle flow around a vortex is in precise analogy to the magnetic field in a wire carrying
electrical current. Show that if we make the equivalence between v and B, then the analog
of vorticity k is given by Ampere’s law

µ0I =

∮
B · dl (13)

4. Show that this analogy can be extended so that the kinetic energy per unit volume of super-
fluid

dE =
1

2
nmv2d3r (14)

is equivalent to the electromagnetic energy density of the wire

dE =
1

2µ0
B2d3r (15)

Hence finding exact equivalences between the physical parameters of superflow in a vortex
{hkm , nm, nmv} and the corresponding parameters for a wire {I, µ0,B}

5. Given that the force per unit length between two parallel current carrying wires a distance
R apart is

F =
µ0I1I2
2πR

(16)

Use the electromagnetic analogy above to find that the force per unit length between two
parallel superfluid vortices with vorticity k1, k2 . Show that the energy needed to create a
pair of vortex and anti-vortex from vacuum is given by

E =
h2n

2πm
ln(R/R0) (17)

where R0 is a constant. This relation holds only when R > R0.
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