
Physics 223b Homework 3 Due 05/23/18 by 5pm

1. Jordan Wigner Transformation of the Majorana Chain

Consider the Majorana chain with Hamiltonian

H =

N∑
j=1

−µc†jcj − tc
†
j+1cj − tc

†
jcj+1 + ∆c†j+1c

†
j + ∆∗cjcj+1 (1)

Take ∆ to be real and t = ∆.

Apply the Jordan Wigner transformation and map it to a spin 1/2 chain

c†j =
∏
l<j

σzl (σ
x
j + iσyj )/2, cj =

∏
l<j

σzl (σ
x
j − iσ

y
j )/2, (2)

(a) What does the total fermion parity symmetry Pf =
∏
j(2c

†
jcj − 1) map to under the transfor-

mation?

(b) What does the −µc†jcj term map to?

(c) In the middle of the chain (1 ≤ j < N), what does the −∆c†j+1cj−∆c†jcj+1 +∆c†j+1c
†
j +∆cjcj+1

term map to?

(d) On an open chain, what is the total spin Hamiltonian? What is the ground state when ∆ =
0, µ > 0? Is the global Z2 symmetry spontaneously broken? Show this by calculating the correlation
function of the order parameter (σx) in the symmetric ground state wave function.

(e) On an open chain, what are the ground states when µ = 0,∆ < 0? Do they break the global
symmetry of the system? Which fermionic ground states do they correspond to in the Majorana
chain model?

(f) On a closed chain, what does the boundary term −∆c†1cN −∆c†Nc1 + ∆c†1c
†
N + ∆cNc1 map to?

What is the total spin Hamiltonian? Is the ground state degenerate?

2. Chiral p+ ip superconductor in 2D

Consider a spinless two dimensional superconductor with mean field Hamiltonian

H =
∑
r

[−t(c†rcr+x̂ +h.c.)− t(c†rcr+ŷ +h.c.) + ∆(c†rc
†
r+x̂ +h.c.) + i∆(c†rc

†
r+ŷ +h.c.)]−

∑
r

µc†rcr (3)

defined on a square lattice of size L×L and periodic boundary condition in both x̂ and ŷ directions.
Here L is the number of sites along one axis.

(a) Perform the Fourier transformation

c†r =
1

L

∑
k

eik·rc†k, cr =
1

L

∑
k

e−ik·rck (4)
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and write the Hamiltonian in terms of ck and c†k and find the pairing function ∆k.

(b) Diagonalize the Hamiltonian and find the eigenmodes (Hint: Write the matrix as Hk = ~d ·~σ). Is
the Hamiltonian gapped if we have −4|t| < µ < 4|t|? What about for µ outside this range? What
happens at µ = ±4|t|? (As the Hamiltonian is particle-hole symmetric, we only need to consider
eigenmodes with positive eigenvalues.)

(c) Consider the normalized vector d̂ =
~d
|d| , where Hk = ~d · ~σ. When µ = 0 and t > 0, how does d̂

change with k? When t = 0 and µ > 0, how does d̂ change with k? Is there a topological difference
between these two cases?

(d) Now consider the system with open boundary condition in the x direction but still periodic in
the y direction. We can still do a Fourier transformation in the y direction but not in x direction.
Find the form of the Hamiltonian Hky after the partial Fourier transform.

(e) For several values of parameters in the topological phase (e.g., t = 1,∆ = 0.75, µ = 1) and in
the trivial phase (e.g., t = 1,∆ = 0.75, µ = 6), numerically solve for the eigenspectrum for each
Hky . It is customary to visualize the spectrum by plotting ky on the horizontal axis and energy on
the vertical axis, and for each ky showing the corresponding eigenvalues as a tower of points above
ky. You should be able to see the ’bulk band’ appearing from points merging closer and closer as
the system size grows, while in the topological phase you should be able to see two isolated ’edge
bands’ emerging. From the numerical eigenvectors, examine where the corresponding ‘edge modes’
reside (their distribution in x direction), while from the ky dependence determine in which direction
they are moving.

(f) Change the boundary condition in the y direction from periodic to anti-periodic. Re-plot the
spectrum for both the topological and trivial phases. Do you see a change in zero energy modes in
the edge band?

3. Detecting Majorana Zero Modes

Consider the configuration shown in the figure: on top of a superconducting ring (blue) with a
Josephson Junction (white) is a semiconductor wire. When the semiconductor wire lies on top of
the superconducting region, it is in the topological phase with Majorana zero modes at the ends (red
dots). The existence of the Majorana zero modes can then be detected from the doubled periodicity
of the critical current through the Josephson Junction with respect to the phase difference between
the superconductors on the two sides. The phase difference φ can be controlled by putting a
magnetic flux Φ through the ring and is given by φ = Φ 2π

Φ0
.

We can model the 1D wire as a left part and a right part coupled through a weak link. The
Hamiltonian for the left part is:

HL =
∑

1≤j≤N
−µc†jcj − tc

†
j+1cj − tc

†
jcj+1 +

∑
1≤j≤N

∆c†jc
†
j+1 + ∆cj+1cj (5)

2



The Hamiltonian for the right part is:

HR =
∑

N+1≤j≤2N

−µc†jcj − tc
†
j+1cj − tc

†
jcj+1 +

∑
N+1≤j≤2N

∆eiφc†jc
†
j+1 + ∆e−iφcj+1cj (6)

Their coupling is given by a weak hopping term

Hc = −t′c†NcN+1 − t′c†N+1cN (7)

(a) Show that when µ = 0, t = ∆, HL is in the topologically nontrivial phase with Majorana zero
modes at the two ends. Identify the Majorana operator corresponding to the zero modes.

(b) Show that HR can be mapped to the same form as HL if we map cj to eiφ/2cj and c†j to e−iφ/2c†j .
Identify the Majorana operator corresponding to the zero modes in HR.

(c) Expand Hc in terms of the Majorana modes on the left and right hand side and keep only the
term that couples the zero modes (because the coupling is weak). Plot the energy of the eigenstates
of the reduced coupling term with respect to φ and find its period.

(d) Usually, the energy of a Josephson junction changes as a periodic function of φ with period 2π.
For the Majorana wire Josephson junction, the period is doubled. Briefly explain why this is the
case.
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