
Physics 223b Homework 2 Due 05/09/18 by 5pm

1. Boson Number Fluctuation in Superfluid.

Consider the superfluid phase whose ground state wave function is a coherent state

|ΨSF 〉 = N e
√
V γb†k=0 |0〉 (1)

where N is the normalization factor, V is the total volume of the system, |γ|2 = n is the density of
bosons in the system.

(a) Calculate the average value of the total boson number in the ground state 〈N〉, where N is∫
r b
†(r)b(r), and b(r) and b†(r) are the annihilation and creation operator of each spatial boson

mode.

(b) Calculate the average value of the total boson number squared in the ground state 〈N2〉.

(c) Calculate the fluctuation of the boson number 〈∆N〉 =
√
〈(N − 〈N〉)2〉.

(d) How does 〈∆N〉 scale with 〈N〉 as 〈N〉 becomes large?

2. Type II Superconductor.

Consider a superconductor in a large magnetic field and close to the transition to the normal state
so that the order parameter is close to zero. The magnetic field B = µ0H points in the z direction
B = (0, 0, B). Correspondingly, we can choose the vector potential to be

A = (0, Bx, 0) (2)

We are going to look for a solution to the Ginzburg Landau equation obtained by varying the free
energy functional with respect to δψ
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ψ + aψ + bψ|ψ|2 = 0 (3)

Plugging in the form of A and dropping the nonlinear term (due to the small-ness of the order
parameter), we get

− ~2

2m∗

(
∇+

2eiBx

~
êy
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ψ + aψ = 0 (4)

1. Show that solutions to this equation takes the form

ψ(r) = ei(kyy+kzz)f(x) (5)

such that f(x) satisfies the equation
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where ωc = 2eB
m∗ .

2. Using the similarity of Eq. 6 with the Hamiltonian of a simple harmonic oscillator, determine

the eigenvalue
(
−a− ~2k2z

2m∗

)
. Show that −a is lower bounded by 1

2~ωc.
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3. At a fixed temperature T < Tc, start from a large external field so that the system is non-
superconducting. Lower the external field so that the above equation can have at least
one solution. What is the critical field strength Hc2 when this happens? (Assume that
a = ȧ(T − Tc).)

4. Recall the definition of the coherence length lc(T ) =
√

~2
2m∗|a| . At the critical field, Hc2, how

much flux is contained in each unit area 2πl2c (T )?

5. Compare Hc2 to the critical field Hc =
√

a2

µ0b
which was derived without considering the

possibility of spatially varying order parameter field. Find the condition when we have an
extra phase transition at Hc2 before Hc, i.e., a type II superconductor. How is this condition
related to the ratio between the London penetration depth

λ(T ) =

√
m∗b

4µ0e2|a|
(7)

and the coherence length lc(T )?

3. BCS superconductor in Zeeman field

Consider the BCS Hamiltonian in the presence of a magnetic field B coupling only to the spin:

H =
∑
k,σ

(εk − µ− σµBB) c†kσckσ +
∑
k,k′

Vk,k′c
†
k′↑c

†
−k′↓c−k↓ck↑ (8)

where Vk,k′ = −V0/Vol for k, k′ within a shell of energy width ~ωD on either side of the Fermi
surface and zero otherwise. µB is the Bohr magneton, σ = +1 or −1 for ↑ or ↓ spin respectively.
(It is assumed that the superconductor as a 2D layer is thin enough to allow penetration of the
magnetic field in the interior, and any orbital coupling is neglected.)

1. Show that the expectation value of H in the BCS wavefunction |Ψ〉 =
∏

k uk + vkc
†
k↑c
†
−k↓|0〉

has the same energy as for B = 0. Hence, minimization of the energy with respect to the pair
occupation amplitude gives the same result as at B = 0.

2. For small B, ignore the interaction term, calculate the lowering of the ground state energy of
the free electron gas caused by the Zeeman coupling, to second order in B.

3. Combine 1 and 2 to obtain the reduction in the condensation energy of the superconductor
caused by the Zeeman coupling. At what value of the magnetic field is superconductivity
destroyed by the Zeeman coupling?

4. Calculate the minimum excitation energy (gap) of the BCS superconductor as a function of
the field B at T = 0. When does the gap collapse? Compare the result with 3. This is
so-called “Pauli limiting field”, also known as “Chandrasekhar-Clogston limit”.

5. Compare this value with that of the critical magnetic field obtained from coupling to the
orbital magnetic moment. Make an estimate about which one is larger for a typical low
temperature superconductor (you can look up relevant parameters in text books or online).
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