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1 Simple Harmonic Oscillator

1.4 General properties of Simple Harmonic Oscillator

1.4.4 Superposition of two independent SHO

(to illustrate the usefulness of complex number)

Suppose we have two SHOs described by

x1 = A1 cos(ω1t+ ϕ1) = Re(A1e
ω1t+ϕ1) = Re(z1) (1)

x2 = A2 cos(ω2t+ ϕ2) = Re(A2e
ω2t+ϕ2) = Re(z2) (2)

What if the two motions are happening at the same time on the same degree of freedom? What
does the total motion look like? Let’s consider a couple of interesting situations.

A. A1 = A2, ω1 = ω2, but ϕ1 6= ϕ2

To do the superposition of x1 and x2, we add z1 and z2 and take the real part

z1 + z2 = A
(
ei(ωt+ϕ1) + ei(ωt+ϕ2)

)
= Aeiωtei(ϕ1+ϕ2)/2

[
ei(ϕ1−ϕ2)/2 + ei(ϕ2−ϕ1)/2

]
= Aei(ωt+ϕ̄)2 cos(δϕ) = 2A cos(δϕ)eiωt+ϕ̄

x1 + x2 = Re(z1 + z2) = 2A cos(δϕ) cos(ωt+ ϕ̄)

(3)

Therefore, the superposed motion is still of the simple sinusoidal form, with total amplitude
|2A cos(δϕ)|. When δϕ = 0, the total amplitude reaches its maximum of 2A; the two SHOs
are said to be in phase. When δϕ = π, the total amplitude reaches its minimum of 0; the two SHOs
are said to be out of phase and cancel each other. We say that when two SHOs have the same
frequency, they can interfere, either constructively or destructively or somewhere in between.

Question: What happens if ω1 = ω2 but A1 6= A2?

B. If A1 = A2, ϕ1 = ϕ2, ω1 6= ω2, but ω1 ≈ ω2

Something interesting happens in this situation. Suppose that at some time t, the two oscillations
are in phase δϕ = 0. On a short time scale, as the two have almost the same frequency, they
interfere constructively. Some time later (on the scale of 1/(ω1 − ω2)), the two oscillations fall out
of phase and may even become completely out of phase with δϕ = π. For some short period of
time at this later point, the two would interfere destructively. Therefore, the total oscillation will
alternate between very strong (large amplitude) and very weak (small amplitude) and this is the
phenomena called ‘Beat’.
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Mathematically, we use again the complex representation to do the superposition

z1 + z2 = Aeiω1t +Aeω2t

= Aei(ω1+ω2)t/2
[
ei(ω1−ω2)t/2 + ei(ω2−ω1)t/2

]
= 2A cos(δωt)eiω̄t

(4)

where we have defined δω = (ω1 − ω2)/2 and ω̄ = (ω1 + ω2)/2. Taking the real part, we have

x1 + x2 = 2A cos(δωt) cos ω̄t (5)

which can be interpreted as oscillation at frequency ω̄, but with slowly time varying amplitude
that changes with frequency δω, that is, a beat. We say that the high frequency oscillation is
‘modulated’ by the low frequency oscillation.

The phenomena of beat provides a very useful way to calibrate / measure frequency against a
frequency standard.

Demo 20203: Frequency Generator Beat Pattern

1.4.5 Why is SHO so ubiquitous

The SHO describes all kinds of small oscillations around equilibrium configurations in a physical
system. Consider a system with a potential landscape as shown below

Point A is a local minimum in the potential landscape and an equilibrium position. The potential
gradient is zero at this point.

dV

dx

∣∣∣
A

= 0 (6)

Close to A, the potential energy V can be Taylor expanded into

V (x) = V (A) +
1

2

d2V

dx2

∣∣∣
A

(x− xA)2 + .... (7)
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If the system stays close enough to point A, we can ignore the higher order terms in ... and the
potential energy takes the same square form as the three examples given previously. In particular,
the restoring force is given by

F = −dV (x)

dx
= −d

2V

dx2

∣∣∣
A

(x− xA) (8)

which is proportional to displacement and in the opposite direction. The resulting motion will be
the sinusoidal oscillation around the equilibrium point.

2 Damped and Forced Harmonic Oscillator

2.1 Damped Harmonic Oscillator

Now let’s consider the more realistic case where the system has dissipation so that the oscillatory
motion cannot go on forever. We go back to the simple example of mass on the spring and consider
now the situation where there is friction.

Friction exerts a force that’s in the opposite direction of motion and takes a simple form of

−mΓ
dx

dt
(9)

which is proportional to the mass of the block and its velocity. Γ is the friction constant. Note that
it has the same dimension as ω. (Friction coming from the bottom surface does not take this form.
Instead, this form of friction can come from, for example, fluids surrounding the moving body.)

The equation of motion now gets modified

m
d2

dt2
x(t) +mΓ

d

dt
x(t) + kx(t) = 0 (10)

which can be reorganized into

d2

dt2
x(t) + Γ

d

dt
x(t) + ω2

0x(t) = 0 (11)

Without solving the equation, we know that the solution should describe a decaying oscillation.
Let’s see what the math say.

To solve this equation for the real function x(t), we solve a corresponding equation for a complex
function z(t)

d2

dt2
z(t) + Γ

d

dt
z(t) + ω2

0z(t) = 0 (12)
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and find x(t) by taking the real part.

We guess the form of the solution to be z(t) = Ae−αt, where α can in general be a complex number.
We take A to be a complex number in general as well, although in many cases we will narrow down
the choice of A later according to the physical situation under consideration.

Plugging this form of solution into the equation we find

α2z(t)− Γαz(t) + ω2
0z(t) = 0 (13)

which leads to a quadratic equation for α

α2 − Γα+ ω2
0 = 0 (14)

The solution of α depends on the relationship between Γ and ω0. Let’s discuss the various cases.

(1) Γ2 > 4ω2
0

This is the case where friction is very large, and we would expect a pure decay of the oscillation.

The solution for α in this case is α± =
Γ±
√

Γ2−4ω2
0

2 , which are two real positive numbers. The
generic solution of z(t) is given by

z(t) = A+e
−α+t +A−e

−α−t (15)

When we take the real part, we find x(t) = Re(z(t)) = Re(A+)e−α+t + Re(A−)e−α−t, which
describes pure decay. We see that the imaginary part of A+ and A− does not enter the final
solution, only the real part does, which can be determined from initial conditions.

Graphically, it looks something like this

This case is called over damping.

(2) Γ2 < 4ω2
0

When friction is small, it should result in a gradual decay of the oscillation.

The solution for α in this case is α± =
Γ±i
√
|Γ2−4ω2

0 |
2 = Γ

2 ± i
√

4ω2
0−Γ2

2 , which are complex numbers.
The generic solution of z(t) is given by

z(t) = A+e
−α+t +A−e

−α−t = A+e
−Γt/2eiωt +A−e

−Γt/2e−iωt (16)
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where ω =
√
ω2

0 − Γ2/4 < ω0. Taking the real part we get

x(t) = Re(z(t)) = Re(|A+|eiφ+e−Γt/2eiωt + |A−|eiφ−e−Γt/2e−iωt) (17)

= |A+|e−Γt/2 cos(ωt+ φ+) + |A−|e−Γt/2 cos(ωt− φ−) (18)

which describes a decaying oscillation at frequency ω.

This case is called under damping.

In the general solution we have four free parameters |A+|, |A−|, φ1, φ2. But we know that we
only have two initial conditions to fix these parameters, so the parameters are redundant. We can
reorganize the terms into the form

x(t) = A1e
−Γt/2 cos(ωt) +A2e

−Γt/2 sin(ωt) (19)

where A1 = |A+| cos(φ1) + |A−| cos(φ2), A2 = −|A+| sin(φ1) + |A−| sin(φ2) are two real parameters
to be set by the initial conditions.

(3) Γ2 = 4ω2
0

This is the case of critical damping and we will explore it in the homework.
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