
Physics 12a Waves Lecture 5 Caltech, 10/12/21

Demo 10701: Damped Oscillator on an Air Track

2 Damped and Driven Harmonic Oscillation

Question 1: How to deal with periodic driving force which are not sinusoidal functions?

Answer: Any reasonably continuous periodic function with period L can be expressed as an infinite
sum of sines and cosines
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The coefficients an and bn can be found from

an = 2
L

∫ L
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Hence, given a driving force of the form f(t), we can decompose it into all the sin and cos compo-
nents, solve the driven motion for each component and then add everything together to obtain the
total motion.

Question 2: So we found one solution, which is good, but how to set initial conditions?

Answer: In the steady state solution, we don’t have any free parameter to change in order to
accommodate different initial conditions. In fact, this is not the only solution, there are many
others. If xD(t) is a solution to the inhomogeneous equation

d2

dt2
x(t) + Γ

d

dt
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0x(t) =
F0

m
cos(ωDt) (4)

and if x0(t) is a solution to the homogeneous equation

d2

dt2
x(t) + Γ

d

dt
x(t) + ω2

0x(t) = 0 (5)

then xD(t) +x0(t) is also a solution of the inhomogeneous equation, describing the driven, damped
oscillation.

While xD(t) describes the periodic driven oscillation at frequency ωD, x0(t) describes the decaying
oscillation at frequency

√
ω0 − Γ2/4. It decays away after time on the order of 1

Γ and is called a
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transient. It is involved to match any given initial condition, but disappears after a while and does
not affect the steady state of the system at long times. The steady state is completely determined
by the driven part, including its frequency, amplitude and the relative phase with the driving force.

Question 3: how to formulate a driven RLC circuit as a driven harmonic oscillator?

Add to the LC circuit a finite resistance R and a periodic driving source S, so that it becomes a
driven damped oscillator. To establish the equation of motion, we choose the degree of freedom to
be the current I(t) in the circuit, and choose a direction for the current and the voltage across all
elements as shown in the figure. The EOM is then given by

0 = VS + VL + VC + VR = VS − L
dI

dt
+
Q

C
−RI (6)

Taking the time derivative on both sides of this equation, we get

0 =
d

dt
VS − L

d2I

dt2
− I
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dt
(7)

which can be reorganized into

d2I
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L

d
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From this equation, we can see that the intrinsic frequency is given by ω0 =
√

1
LC , while the friction

constant is given by Γ = R
L .

Demo: LRC circuit

3 Coupled Harmonic Oscillators, Normal Modes

3.1 Two masses coupled by spring

Demo 20301: Two Coupled Air Track Gliders

Having studied the oscillation of a single degree of freedom in detail, now let’s move on to the
discussion of the oscillation of several coupled degrees of freedom. As the simplest example, consider
two blocks as arranged in the following figure.
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Suppose that the two blocks are of the same mass m, the three springs have the same Hooke’s
constant k. Initially, all three springs are relaxed and the two masses are at equilibrium position
x10 and x20. Assume no friction or external driving force. If we offset the two masses to a non-
equilibrium position, the system is going to start to oscillate and the oscillation of the two masses
are going to be coupled. To understand this coupled oscillation, let’s write down the EOM.

For mass 1, the EOM is

m
d2x1

dt2
= −k(x1 − x10) + k[(x2 − x20) − (x1 − x10)] (9)

For mass 2, the EOM is

m
d2x2

dt2
= −k(x2 − x20) − k[(x2 − x20) − (x1 − x10)] (10)

Let’s change variables to x̃1 = x1 − x10, x̃2 = x2 − x20 and write everything in matrix form

X =

(
x̃1

x̃2

)
, M =

(
m 0
0 m

)
,K =

(
2k −k
−k 2k

)
(11)

and the EOM becomes

M
d2X

dt2
= −KX (12)

which looks very close in form to the EOM for a single mass on a spring, but we should keep in
mind that everything is now a matrix. Moving M to the right hand side of the equation (by taking
a matrix inverse), we get

d2X

dt2
= −M−1KX = −

(
2k/m −k/m
−k/m 2k/m

)
X (13)

To solve this set of equation, we put it again into complex form

d2Z

dt2
= −M−1KZ (14)

where Z is a two component complex vector. Suppose that Z(t) takes the form of Z(t) = Ae−iωt,

where A is a vector

(
A1

A2

)
of complex numbers that is independent of time. Substituting this form

of solution into the EOM, we get

d2Z

dt2
= −ω2Ae−iωt = −M−1KAe−iωt (15)

Note that while we can cancel the two e−iωt factors on the two sides, we cannot cancel the two As
because they are vectors. The EOM becomes

M−1KA = ω2A (16)

which is the eigen-equation of M−1K with eigenvector A and eigenvalue ω2.
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