
Physics 12a Waves Lecture 6 Caltech, 10/14/21

3 Coupled Harmonic Oscillators, Normal Modes

3.1 Two masses coupled by springs

In the last lecture, we established the equation of motion for this system of two mass blocks coupled
by three springs. The EOM reduced to an eigen equation of the form

M−1KA = ω2A (1)

where

A =

(
A1

A2

)
, M =

(
m 0
0 m

)
,K =

(
2k −k
−k 2k

)
(2)

Solving this eigen equation, we get

ω(1) =

√
k

m
, ω(2) =

√
3k

m
(3)

and correspoindingly

A(1) ∝
(

1
1

)
, A(2) ∝

(
1
−1

)
(4)

Putting this together, we find two solutions, or two modes, of the EOM. In mode 1, we have

Z(1)(t) = a(1)
(

1
1

)
e−iω

(1)t (5)

Taking the real part we get

X(1)(t) =
(
Re(a(1)) cos(ω(1)t)− Im(a(1)) sin(ω(1)t)

)(1
1

)
(6)

More specifically,

x̃
(1)
1 = x̃

(1)
2 = Re(a(1)) cos(ω(1)t)− Im(a(1)) sin(ω(1)t) = |a(1)| cos(ω(1)t− ϕ(1)) (7)

That is, the two masses oscillate in the same way: the same frequency, the same amplitude, and
the same phase. Their motion is the same and the middle spring is not stretched or compressed at
all.
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In mode 2, we have

Z(2)(t) = a(2)
(

1
−1

)
e−iω

(2)t (8)

Taking the real part we get

X(2)(t) =
(
Re(a(2)) cos(ω(2)t)− Im(a(2)) sin(ω(2)t)

)( 1
−1

)
(9)

More specifically,

x̃
(2)
1 = −x̃(2)2 = Re(a(2)) cos(ω(2)t)− Im(a(2)) sin(ω(2)t) = |a(2)| cos(ω(2)t− ϕ(2)) (10)

That is, the two masses oscillate in the opposite way: the same frequency, the same amplitude, and
with a phase difference of π.

The general motion of the two masses is the superposition of these two modes

X(t) = |a(1)| cos(ω(1)t− ϕ(1))

(
1
1

)
+ |a(2)| cos(ω(2)t− ϕ(2))

(
1
−1

)
(11)

There are four free parameters in this solution, |a(1)|, ϕ(1), |a(2)| and ϕ(2) which can be determined
from the initial conditions x̃1(0), x̃′1(0), x̃2(0), x̃′2(0).

Let’s consider some special cases of initial conditions and see what kind of motion it starts.

(1) x̃1(0) = x̃2(0) = x0, x̃
′
1(0) = x̃′2(0) = 0

The two blocks are displaced by the same amount and then released. In this case, only mode 1 is
excited and we have

X(t) = x0 cos(ω(1)t)

(
1
1

)
(12)

(2) x̃1(0) = x̃2(0) = 0, x̃′1(0) = x̃′2(0) = v0

The two blocks are set to move at the same initial speed, but with no initial displacement. Again,
only mode 1 is excited and we have

X(t) =
v0

ω(1)
sin(ω(1)t)

(
1
1

)
(13)

(3) x̃1(0) = −x̃2(0) = x0, x̃
′
1(0) = x̃′2(0) = 0

The two blocks are displaced by the opposite amount and then released. In this case, only mode 2
is excited and we have

X(t) = x0 cos(ω(2)t)

(
1
−1

)
(14)

(4) x̃1(0) = x0, x̃2(0) = x̃′1(0) = x̃′2(0) = 0

Even though only mass 1 is displaced initially, both blocks will move. The whole motion is given
by

X(t) =
1

2
x0 cos(ω(1)t)

(
1
1

)
+

1

2
x0 cos(ω(2)t)

(
1
−1

)
(15)
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That is, both modes are excited, with the same amplitude. The motion of the two blocks is the
superposition of two SHO with different frequencies.

From these examples, we see that in a coupled Harmonic oscillator, even though the original degree
of freedoms are coupled and move in a complicated way, some transformed degree of freedom
(x̃1 + x̃2 and x̃1 − x̃2 in this case) have independent motion and each undergoes a SHO.

Question: what if the middle spring has a different spring constant than the side ones?

We are going to answer this question in two ways: first by direct calculation and then using
symmetry argument. We use the simplified notation of x1, x2 instead of x̃1, x̃2.

(1) Direct Calculation

Suppose that the middle spring has spring constant k′. For mass 1, the EOM is

m
d2x1
dt2

= −kx1 + k′(x2 − x1) (16)

For mass 2, the EOM is

m
d2x2
dt2

= −kx2 − k′(x2 − x1) (17)

In matrix form, this becomes
M−1KA = ω2A (18)

where

X =

(
x1
x2

)
, M =

(
m 0
0 m

)
,K =

(
k + k′ −k′
−k′ k + k′

)
(19)

Solving the eigenvalue equation for M−1K = 1
m

(
k + k′ −k′
−k′ k + k′

)
, we get

ω(1) =

√
k

m
, ω(2) =

√
k + 2k′

m
(20)

and correspondingly

A(1) ∝
(

1
1

)
, A(2) ∝

(
1
−1

)
(21)

Therefore, the eigenvectors do not change while the eigen frequencies do change.

(2) Symmetry Argument

Consider the reflection operation of x1 → −x2, x2 → −x1, which in matrix form is

R =

(
0 −1
−1 0

)
(22)

The system is setup in a way that is reflection symmetric. Put into maths language, this means
that R commutes with M−1K, which we can check explicitly. This is true no matter what the
spring constant is for the middle spring.
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Because R and M−1K commute, they have common eigenvectors. So instead of diagonalizing
M−1K, we can diagonalize R and find two eigenvectors

A(1) ∝
(

1
1

)
, A(2) ∝

(
1
−1

)
(23)

which has eigenvalue −1 and 1 respectively under R.

Therefore, A(1) and A(2) are also eigenvectors of M−1K, although from this symmetry argument
we cannot determine the eigen frequencies of the eigen modes.

3.2 Driven dissipative coupled harmonic oscillator

Demo 20301: two coupled air track gliders

What if the coupled harmonic oscillator system is also damped and driven? Well the EOM can
become highly complicated. But there are also important simple physical features that we can
identify out of the complicated equations. In particular, we are going to see that resonance can
still happen when the driving frequency matches the eigen frequency of each mode.

Let’s consider the two masses on spring example, now with friction and driving forces acting on
the two masses. The EOM becomes

M
d2X

dt2
+MΓ

dX

dt
+KX = F (24)

where M =

(
m 0
0 m

)
, K =

(
2k −k
−k 2k

)
, F =

(
F1

F2

)
.

The complex version of the EOM is

d2Z

dt2
+ Γ

dZ

dt
+

1

m
KZ =

1

m
F0e

iωDt (25)

where we have assumed that F is a periodic driving force. Note that F0 is again a two component
vector.

Let’s look for steady state solution of the form Z = AeiωDt. Plugging it into the equation we get

−ω2
DA+ iωDΓA+

1

m
KA =

F0

m
(26)

This looks really complicated, but we can use our knowledge of the normal modes to decouple the
motion and simplify the equation.

Take the eigenmodes A(1) and A(2) of the freely oscillating system which satisfy the condition

KA(1) = m(ω(1))2A(1), KA(2) = m(ω(2))2A(2) (27)

As A(1) and A(2) are linearly independent, we can expand everything in terms of them.

A = a(1)A(1) + a(2)A(2), F0 = f (1)A(1) + f (2)A(2) (28)
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The EOM becomes

a(1)(−ω2
D + iωDΓ + (ω(1))2)A(1) +a(2)(−ω2

D + iωDΓ + (ω(2))2)A(2) =
1

m

(
f (1)A(1) + f (2)A(2)

)
(29)

Because A(1), A(2) are linearly independent modes, the equation separates into two parts

a(1)
(
−ω2

D + iωDΓ + (ω(1))2
)

=
f (1)

m
, a(2)

(
−ω2

D + iωDΓ + (ω(2))2
)

=
f (2)

m
(30)

which exactly matches the equation we get for the driven oscillation of a single DOF. Therefore,
the full motion is the superposition of two driven oscillations, each can achieve resonance if 1. the
driving frequency matches their eigen frequency and 2. if the driving force has a component along
the eigen mode.

When we drive a generic system with many degrees of freedom, if we sweep the frequency, we are
going to see multiple resonances. This is exactly what is being measured in, for example, molecular
spectroscopy, where the location and width of the resonance peaks carry information regarding
the structure of the molecule (hence how it vibrates). When a white light shines on a sample,
the oscillating light drives the vibration of the molecules. When the light frequency matches the
vibration eigen frequency of the molecule, the vibration goes into resonance and the light absorption
reaches a peak. Therefore, after passing a white light through the sample, the absorption peak can
tell us about the structure of the molecules in the sample.

Demo 20207: metronome synchronization
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