
Physics 12a Waves Lecture 7 Caltech, 10/19/21

3 Coupled Harmonic Oscillators, Normal Modes

3.2 Coupled oscillator with many DOF

Demo 20401: Three Coupled Air Track Gliders, Demo 20402: Six Coupled Pendula

Now let’s look at how a coupled oscillator with many DOF oscillates. The intuitive picture is
basically given by the two DOF example, but we want to be more general about the mathematical
setup.

Consider a set of n EOM with n DOF involved.

m1
d2

dt2
x1 = F11 + F12 + ...+ F1n

......

mn
d2

dt2
xn = Fn1 + Fn2 + ...+ Fnn

(1)

where Fij is the force acting on the ith particle due to small displacement of the jth particle away
from its equilibrium position.

Assume that at equilibrium, x1 = x2 = ... = xn = 0. Fij depends linearly on xj as

Fij = −kijxj (2)

Note that kij = kji. This is because, suppose that the total potential energy in the system which
depends on x1,..., xn is V . Then we have

kij = −∂Fi

∂xj
= − ∂

∂xj

(
−∂V
∂xi

)
=

∂2V

∂xj∂xi
(3)

At the same time, we have

kji = −∂Fj

∂xi
= − ∂

∂xi

(
− ∂V
∂xj

)
=

∂2V

∂xj∂xi
(4)

Therefore, kij = kji.

We can write the set of EOM in matrix form as

M
d2

dt2
X = −KX (5)

where X =

x1...
xn

, M =

m1

. . .

mn

, K =

k11 . . . k1n
...

. . .
...

kn1 . . . knn

.

As long as M is invertible, we can move it to the right hand side and get

d2

dt2
X = −M−1KX (6)
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To solve this equation, we first put it into the complex form

d2

dt2
Z = −M−1KZ (7)

and then try solutions of the form

Z(j) = A(j)eiω
(j)t (8)

A(j) then satisfies the eigen equation

M−1KA(j) = (ω(j))2A(j) (9)

Is it guaranteed that there are always solutions? If so, how do they look like? To answer this
question, we make use of a math theorem:

A real symmetric n×n matrix has n real eigenvalues (two or more of them could be the same) and
correspondingly n real eigenvectors which are orthogonal to each other.

In order to apply this theorem, we need to modify the eigen equation by multiplying M1/2 =
√
m1

. . .
√
mn

 from the left on both sides

M−1/2KM−1/2
(
M1/2A(j)

)
= (ω(j))2

(
M1/2A(j)

)
(10)

As both M1/2 and K are symmetric real matrices, M−1/2KM−1/2 is real symmetric and there
are n solutions with orthogonal eigenvectors. That is, there are n eigenmodes, characterized by
eigenfrequency ω(j) and eigenvector A(j). Note that the A(j)’s may not be orthogonal to each other
but the M1/2A(j)s are. (

A(k)
)T

MA(j) = δjk (11)

The eigenvalue (ω(j))2 is real, but it can be positive, zero or negative, corresponding to ω(j) being
real, zero or imaginary. What does it mean?

(1) If (ω(j))2 > 0, ω
(j)
± = ±

√
(ω(j))2 are real numbers. The general solution of the motion is

Z(t) =
[
a
(j)
+ eiω

(j)
+ t + a

(j)
− e

iω
(j)
− t
]
A(j) (12)

Taking the real part, we get

X(t) =

[(
Re(a

(j)
+ ) +Re(a

(j)
− )
)

cos(
√

(ω(j))2t) +
(
−Im(a

(j)
+ ) + Im(a

(j)
− )
)

sin(
√

(ω(j))2t)

]
A(j)

(13)
which describes oscillatory motion.

(2) If (ω(j))2 = 0, ω(j) = 0. In this case, we have Z(t) = A(j), which is stationary. Actually, we are
missing a solution Z(t) = tV (j), which describes constant velocity motion. So the general solution
is given by

Z(t) = A(j) + tV (j) (14)
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If a system is not under the action of external force, the center of mass motion is an eigenmode with
zero frequency. The center of mass of the system can remain stationary or move with a constant
velocity.

(3) If (ω(j))2 < 0, ω
(j)
± = ±i

√
−(ω(j))2 are pure imaginary numbers. The general solution of the

motion is
Z(t) =

[
a
(j)
+ e−

√
−(ω(j))2t + a

(j)
− e
√
−(ω(j))2t

]
A(j) (15)

Without loss of generality, we can take a to be real. Then X(t) = Z(t). The first part of the
solution describes an exponentially decaying motion while the second part describes an exponen-
tially growing motion, so that after a little while the whole motion is exponentially growing. This
corresponds to motion away from an unstable equilibrium point.

Now let’s focus on the case with (ω(j))2 > 0 and take a more careful look at the form of the solution.

Z(j) = a(j)A(j)eiω
jt = |a(j)|ei(ω(j)t+ϕ(j))A(j) (16)

Here a(j) is a complex number with phase ϕ(j), A(j) is a real vector, and ω(j) is a real number.

Taking the real part of the solution, we get

X(j) = |a(j)| cos(ω(j)t+ ϕ(j))A(j) = |a(j)| cos(ω(j)t+ ϕ(j))

A
(j)
1
...

A
(j)
n

 (17)

That is, in an eigenmode, all the DOF oscillates with the same frequency, the same phase∗, and
with a fixed ratio of amplitude (note that the ratio can be negative corresponding to a π phase
shift).

If all the modes are oscillatory, combining all the eigenmodes, we get the total motion

X(t) =
∑
j

|a(j)| cos(ω(j)t+ ϕ(j))A(j) (18)

The free parameters |a(j)| and ϕ(j) are to be determined from the initial condition xi(0) and x′i(0).
The n normal modes form a linearly independent (orthogonal as defined above), complete set of
basis for the full motion.

4 Oscillation in an Infinite System

4.1 Translation invariant, Locally interacting system

In systems with infinite number of DOF, there are infinitely many modes, and infinitely many
frequencies. We need to solve equations with infinite dimensional matrices, which becomes infinitely
complicated. However, in the physical systems we are interested in, there are constraints which
simplify the problem: 1. Translation symmetry 2. Local interaction. Because of this, the problem
becomes solvable.

Let’s start from a large but finite system with 4 particles. (Very large indeed!) The four particles
are restricted to move along the ring and they are connected along the ring by springs. The whole
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configuration of the system is translation invariant (from 1 to 2 to 3 to 4 to 1). Moreover, each
particle is only connected to its neighbors, so the interaction is local.

The EOM reads

m d2

dt2
x1 = −k(x1 − x2)− k(x1 − x4) = −2kx1 + kx2 + kx4

m d2

dt2
x2 = −2kx2 + kx3 + kx1

m d2

dt2
x3 = −2kx3 + kx4 + kx2

m d2

dt2
x4 = −2kx4 + kx1 + kx3

(19)

In matrix form
d2

dt2
X = − 1

m
KX (20)

where X =


x1
x2
x3
x4

, K =


2k −k 0 −k
−k 2k −k 0
0 −k 2k −k
−k 0 −k 2k

.

We can turn this into a complex equation

d2

dt2
Z = − 1

m
KZ (21)

and make the assumption that Z takes the form Z = Aeiωt, which leads to the eigen equation

1

m
KA = ω2A (22)

We can solve the eigenvalue equation and find four eigenmodes:

ω(1) = 0, A(1) =


1
1
1
1

 , ω(2) =
√

2k
m , A(1) =


1
0
−1
0


ω(3) =

√
2k
m , A(3) =


0
1
0
−1

 , ω(4) =
√

4k
m , A(1) =


1
−1
1
−1


(23)
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