Physics 12a Waves Lecture 8 Caltech, 10/21/21

4 Oscillation in an Infinite System

4.1 Translation invariant, Locally interacting system

Consider the following system of four particles coupled along a 1D chain in a translation invariant
way.
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The first mode is not an oscillating mode. The motion is described by
1
1
XO(t) = Re(zV (1)) = af 1 (2)
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Actually we missed a solution, as we have discussed about the w = 0 case before. The full solution
in this case is

XW(t) = (|al + [blt) (3)

—

which describes the same motion for all four particles around the circle at constant velocity. This
is not an oscillatory motion, but rather the center of mass motion.



In the second mode, the first and third particle have opposite displacement while the second the
fourth particle do not move. The motion in this mode is then described as

1
X(t) = Re(Z(t)) = la] cos(wt +) | *, (4)

If we plot the instantaneous shots of this motion at different time points, it would look like

The third mode is very similar. The second and fourth particle having opposite displacement while
the first and third particle do not move. These two modes have the same frequency and are said
to be degenerate.

In the fourth mode, all particles move, with the amplitude change between 1 and —1 from particle
to particle. This mode has the highest frequency.

Now let’s solve the problem in a different way. Instead of directly solving this eigen equation, we
can make use of the symmetry in the system. The system is translation invariant where translation
symmetry is implemented as
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The EOM is translation invariant because
SK =KS (7)

Because S and K commute, we can find the eigen vectors of %K from the eigen vectors of S. That

is, we look for A’s that satisfy
SA=pA (8)

where J is a number. We find four sets of solutions

B=1,i,—i,—1 (9)



and the eigen vectors
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Plugging this into the eigen equation for %K, we find (w(l))Q =0.

This is the center of mass motion with
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This mode is invariant under translation
SXW (1) = xW(g) (12)
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The corresponding eigenvalue for %K is (w®)? = %’f
The motion is described by
1
ZO¢) = a _"1 et (13)
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so that
22 (1) = |af cos(wt + )
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a:é)(t) = |a|cos(wt + ¢+ T) (14)
22 (t) = |af cos(wt + ¢ + 7)

x, " (t) = |of cos(wt + ¢ + 3{)
where ¢ is the phase of a. The four particles are all oscillating, with the same amplitude, the same
frequency, but with a phase shift of 5 from one to the next.

Because of the phase shift, the motion is not completely invariant under translation, but it trans-
forms in a nice way. In particular,

SA®) = iA® (15)



and correspondingly
SXP(t) = XA (¢ - 2l) (16)
w

That is, spatial translation is related to time translation in a straight forward way.

Let’s take some instantaneous shots of the motion in solution (2). At ¢t =0, 5, 5, I, g’—g, the
displacement of the four particles looks like
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We have connected the four dots with a sinusoidal curve so that it becomes clear that from one
frame to the next, the sinusoidal curve is moving to the left. That is, the wave form in the system
is ‘traveling’. It is moving with a velocity

v = = — (17)

Therefore, this solution describes a Traveling Wave. This can also be seen from the expression of
the solution

2(t) = la] cos [wt + ¢+ Z( = 1)] = lafcos | =(alj = 1) +vt) +¢] (18)

where spatial coordinate and time coordinate are combined in a way as a(j —1)+vt and the solution
is a function of this combination only. This is the hallmark of having a traveling wave.
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The corresponding eigenfrequency of this mode is the same as the previous case (w(3))2 = %

The motion is described by

ZO@) =a| ' (19)



so that

:1:%3) (t) = |a cos(wt + )

:17%3) (t) = |afcos(wt + ¢ — T) (20)
CC:(S?)) (t) = |a| cos(wt + ¢ — )

2O (1) = o cos(wt + ¢ — 5)

where ¢ is the phase of a. The four particles are all oscillating, with the same amplitude, the same
frequency, but with a phase shift of —F from one to the next.

Again, the solution transforms under translation symmetry in a nice way. In particular,
SAB®) = —iA® (21)

and correspondingly

SX® (1) = XO) (¢ + %) (22)

where again spatial translation is related to time translation in a straight forward way. This
traveling wave mode is almost the same as mode 2’ except that it is traveling in the opposite
direction.
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The eigen-frequency of this mode is (w®))? = %.
The motion is described by
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x, (t) = |af cos(wt + ¢ + )

where ¢ is the phase of a. The four particles are all oscillating, with the same amplitude, the same
frequency, but with a phase shift of = from one to the next.

The solution transforms under translation symmetry as
SAW — 2@ (25)
and correspondingly

SX® (1) = XDt 4 g) (26)

Solutions (3’) and (4) also describing traveling waves.

Why are solution (2’) and (3’) different from solution (2) and (3)? In fact, (2) and (3) are eigen
modes of the same eigenvalue (w)? = % , so we can take different linear superpositions of them and



we still have eigenmodes. In particular, we can make superpositions of (2) and (3) into (2’) and
(3’) as
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That is, if we make superposition of two traveling waves with the same frequency but moving in
opposite directions we get a wave that does not move — a Standing Wave. In the standing wave,
some particles do not move at all. They are called the nodes of the wave.



