Physics 12a Waves Lecture 9 Caltech, 10/26/21

4 Oscillation in an Infinite System

4.4 Translation invariant, locally interacting system in the Infinite Limit

Now if we increase N from 4 to oo, we can see the continuous wave emerging. Suppose that we
have a large number of mass points on the ring which are connected along the ring by springs. The

equation of motion looks like
d2
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Consider the complex version of the equation and assume that the solution takes the form Z = Ae™?.

We get the eigen equation
1
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with eigen values w? and eigen vectors A. There are N independent solutions, which turn out to

be
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The N eigen vectors can be found by solving the eigen equation of the translation operator S
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and we can verify that
SAU) — i2mi/N 4 (5) (6)
Because
SKS™' =K (7)

the AU)’s are eigen states of K as well.

A few comments about this solution:



(1) This form of AU) works for any translation invariant K which satisfies
SKS™'=K (8)

independent of the details of the coupling!! There can be next nearest neighbor coupling, next-
next-nearest-neighbor coupling, etc., the form of A would stay the same.

I will state this in a more formal way:

For a translation invariant system of coupled harmonic oscillators described by K which satisfies
SKS~! = K, we can always find a set of eigenvectors AU) s.t.

G AW — gi2mi/N A(7) (9)
That is, AY) is a common set of eigenvectors for K and S with eigenvalues (w(j ))2, ei2mi/N
tively.
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(2) The eigenvectors AU) which are eigenvectors of both K and S represents traveling waves.

To see this, we write down the full solution and take the real part to see the full motion

2n(t) = Re(zn(t)) = Re (a(j)ei%rj (nfl)eiw(j)t> = |a9| cos <w(j)t + 2%(” —1)+ SOU)) (10)

Now let’s make some changes to the notation so that it looks more like a continuous wave. We are
going to use z to label the equilibrium position of the mass particles so that

r=an—1), n=1,2,..,N (11)

where a is the lattice spacing. In the limit of N — 0o, a — 0,  becomes continuous. To label the
displacement of the wave, we are going to use 1 instead of . Now the wave is described by

j ; 2mj .
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where L = Na is the total length of the system.

Now we are going to define a very important parameter for describing waves: the wave number,
which unfortunately is also labeled by k.

. 2mj
L) = 224 13
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j takes value from 0 to N — 1, so that k takes value from 0 to 27T(JZ_1). If we take j = N, i.e.
k= @ = 27“, the form of the wave function v (z,t) is the same as j = 0, i.e. k = 0, therefore k
is periodic with period %’r Because of this periodicity, k£ can actually take value in any segment of
length 22, A convenient choice is [-Z, ).
Then v takes the form (if we omit j the mode lable)
U(x,t) = |af cos (wt + kz + @) (14)

which is how waves are usually described.



We can further write it as
Y(x,t) = |af cos (k(z +vt) + ) (15)

such that the space and time coordinates are combined in the form x + vt, where v = . v is the

velocity of the wave because if we shift the time coordinate by At and shift the spatial coordinate
by Az = —vAt, the shape of the wave remains the same. In fact, this applies whenever the wave
is a function of z 4+ vt only.

P(x,t) = fz £ ot) (16)

f could take all different kinds of shape as shown in the following figure. In all cases, the wave is
moving with velocity v.
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The formula for the traveling wave contains some important parameters: the amplitude of the wave
||, the frequency w, the wave number &k and the phase ¢. From them, we can find the period both
in time

27
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and in space, also called the wavelength
2
A= — 1
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Another important notion is the dispersion relation, which is how w depends on k. In this example,

we have
(w)? = 2mﬁ (1 —cos(2mj/N)) = :;h (1 — cos(ka)) (19)

where kj, denotes the Hooke’s constant for the spring while £ denotes the wave number. When k&
is small, we have

1
(w)* ~ Ekhk% (20)

so w depends linearly on k and this is referred to as the linear dispersion relation. It is also possible
to have a quadratic dispersion relation with w ~ k? or even higher order.

(3) The full motion, which is a superposition of all possible modes, is given by

Z o] cos ( D¢+ kg 4 SO(])) (21)

each mode contains two free real parameters |«?)| and ), which can be tuned to match initial
conditions ¥ (x,0) and 8tw x,t) |t o



