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4 Oscillation in an Infinite System

4.4 Translation invariant, locally interacting system in the Infinite Limit

Now if we increase N from 4 to ∞, we can see the continuous wave emerging. Suppose that we
have a large number of mass points on the ring which are connected along the ring by springs. The
equation of motion looks like

m
d2

dt2
X = −KX (1)

where

X =


x1
x2
...
xN

 , K =


2k −k 0 . . . −k
−k 2k −k . . . 0
0 −k 2k . . . 0

. . .

−k 0 0 . . . 2k

 (2)

Consider the complex version of the equation and assume that the solution takes the form Z = Aeiωt.
We get the eigen equation

1

m
KA = ω2A (3)

with eigen values ω2 and eigen vectors A. There are N independent solutions, which turn out to
be

(
ω(j)

)2
=

2k

m
(1− cos(2πj/N)), A(j) =


ei2πj·0/N

ei2πj·1/N

...

ei2πj·(N−1)/N

 (4)

The N eigen vectors can be found by solving the eigen equation of the translation operator S

S =


0 1 . . . 0
0 0 . . . 0

. . .

1 0 . . . 0

 (5)

and we can verify that
SA(j) = ei2πj/NA(j) (6)

Because
SKS−1 = K (7)

the A(j)’s are eigen states of K as well.

A few comments about this solution:
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(1) This form of A(j) works for any translation invariant K which satisfies

SKS−1 = K (8)

independent of the details of the coupling!! There can be next nearest neighbor coupling, next-
next-nearest-neighbor coupling, etc., the form of A(j) would stay the same.

I will state this in a more formal way:

For a translation invariant system of coupled harmonic oscillators described by K which satisfies
SKS−1 = K, we can always find a set of eigenvectors A(j) s.t.

SA(j) = ei2πj/NA(j) (9)

That is, A(j) is a common set of eigenvectors for K and S with eigenvalues
(
ω(j)

)2
, ei2πj/N respec-

tively.

(2) The eigenvectors A(j) which are eigenvectors of both K and S represents traveling waves.

To see this, we write down the full solution and take the real part to see the full motion

xn(t) = Re(zn(t)) = Re
(
α(j)e

i2πj
N

(n−1)eiω
(j)t
)

= |α(j)| cos

(
ω(j)t+

2πj

N
(n− 1) + ϕ(j)

)
(10)

Now let’s make some changes to the notation so that it looks more like a continuous wave. We are
going to use x to label the equilibrium position of the mass particles so that

x = a(n− 1), n = 1, 2, ..., N (11)

where a is the lattice spacing. In the limit of N →∞, a→ 0, x becomes continuous. To label the
displacement of the wave, we are going to use ψ instead of x. Now the wave is described by

ψ(x, t) = |α(j)| cos

(
ω(j)t+

2πj

L
x+ ϕ(j)

)
(12)

where L = Na is the total length of the system.

Now we are going to define a very important parameter for describing waves: the wave number,
which unfortunately is also labeled by k.

k(j) ≡ 2πj

L
(13)

j takes value from 0 to N − 1, so that k takes value from 0 to 2π(N−1)
L . If we take j = N , i.e.

k = 2πN
L = 2π

a , the form of the wave function ψ(x, t) is the same as j = 0, i.e. k = 0, therefore k
is periodic with period 2π

a . Because of this periodicity, k can actually take value in any segment of
length 2π

a . A convenient choice is [−π
a ,

π
a ).

Then ψ takes the form (if we omit j the mode lable)

ψ(x, t) = |α| cos (ωt+ kx+ ϕ) (14)

which is how waves are usually described.
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We can further write it as
ψ(x, t) = |α| cos (k(x+ vt) + ϕ) (15)

such that the space and time coordinates are combined in the form x + vt, where v = ω
k . v is the

velocity of the wave because if we shift the time coordinate by ∆t and shift the spatial coordinate
by ∆x = −v∆t, the shape of the wave remains the same. In fact, this applies whenever the wave
is a function of x± vt only.

ψ(x, t) = f(x± vt) (16)

f could take all different kinds of shape as shown in the following figure. In all cases, the wave is
moving with velocity v.

The formula for the traveling wave contains some important parameters: the amplitude of the wave
|α|, the frequency ω, the wave number k and the phase ϕ. From them, we can find the period both
in time

T =
2π

ω
(17)

and in space, also called the wavelength

λ =
2π

k
(18)

Another important notion is the dispersion relation, which is how ω depends on k. In this example,
we have

(ω)2 =
2kh
m

(1− cos(2πj/N)) =
2kh
m

(1− cos(ka)) (19)

where kh denotes the Hooke’s constant for the spring while k denotes the wave number. When k
is small, we have

(ω)2 ≈ 1

m
khk

2a2 (20)

so ω depends linearly on k and this is referred to as the linear dispersion relation. It is also possible
to have a quadratic dispersion relation with ω ∼ k2 or even higher order.

(3) The full motion, which is a superposition of all possible modes, is given by

ψ(x, t) =
∑
j

|α(j)| cos
(
ω(j)t+ k(j)x+ ϕ(j)

)
(21)

each mode contains two free real parameters |α(j)| and ϕ(j), which can be tuned to match initial
conditions ψ(x, 0) and ∂

∂tψ(x, t)
∣∣
t=0

.
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