
Physics 12a Waves Lecture 10 Caltech, 10/28/21

4 Oscillation in an Infinite System

4.5 Fixed Boundary condition

Consider a configuration as shown below

The system is not translation invariant any more, although in the middle part of the system it still
looks translation invariant. So naively, the solution we had previously does not work. But in fact,
we can use it to find the solution to the new problem.

The EOM is now given by

m d2

dt2
x1 = −2khx1 + khx2

m d2

dt2
xn = −2khxn + khxn−1 + khxn+1, n = 2, ..., N − 1

m d2

dt2
xN = −2khxN + khxN−1

(1)

This set of EOM is still local, but not quite translation invariant.

We can extend it to a translation invariant form, by embedding the system in a larger system of
size 2N + 2. The mass blocks are now labeled from −N to N + 1. This larger system is translation
invariant and in order to find solutions that correspond to the original problem, we add the extra
condition that x0 = 0 and xN+1 = 0. That is, we imagine the two walls are also mass blocks, but
they do not move.

The EOM becomes

m d2

dt2
xn = −2khxn + khxn−1 + khxn+1, n = −N, ..., N + 1

x0 = xN+1 = 0
(2)

We take periodic boundary condition so that xN+2 = x−N .

This is now a translation invariant EOM which we know the solution to. But in order to get back
to the original problem, we need to show: a. all solutions to Eq. 2 are solutions to Eq. 1 as well;
b. all solutions to Eq. 1 can be extended to solutions to Eq. 2.

a. is easy to show because the EOM in Eq. 2 for i = 1, ..., N is exactly the same as that for Eq. 1.
To show b. is harder and that is what we are going to do.

Suppose that x1, ..., xN are solutions to Eq. 1. Then x1, ..., xN also satisfy Eq. 2 with constraint
x0 = xN = 0.
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Now the EOM for x0 becomes

m
d2

dt2
x0 = −2khx0 + khx1 + khx−1 (3)

Because x0 = 0, we get x−1 = −x1. That is, we can extend the solution to x−1.

Now the EOM for x−1 reads

m
d2

dt2
x−1 = −2khx−1 + khx0 + khx−2 (4)

Comparing it to the EOM for x1 we find x−2 = −x2.

We can continue this process and find x−n = −xn, n = 1, ..., N .

Finally we get

m
d2

dt2
x−N = −2khx−N + khx−N+1 + khxN+1 (5)

which is consistent with the EOM for xN and the constraint that xN+1 = 0. And the EOM for
xN+1 reads

m
d2

dt2
xN+1 = −2khxN+1 + khx−N + khxN (6)

which is consistent with xN+1 = 0.

Therefore, given a solution to Eq.1, we can consistently extend it to a solution for Eq. 2. Because
of this, in order to solve Eq.1, we can solve Eq.2 instead.

We know the general solution of Eq.2, which is

ψ(x, t) =
2N+2∑
j=1

|α(j)| cos
(
ω(j)t+ k(j)x+ ϕ(j)

)
(7)

where k(j) = 2πj
(2N+2)a ,

(
ω(j)

)2
= 2kh

m (1− cos(k(j)a)).

Now impose the constraint that x0 = 0 and xN+1 = 0, which corresponds to ψ(0, t) = ψ((N +
1)a, t) = 0. This leads to the condition that

ψ(0, t) =
∑2N+2

j=1 |α(j)| cos
(
ω(j)t+ ϕ(j)

)
= 0,

ψ((N + 1)a, t) =
∑2N+2

j=1 (−)j |α(j)| cos
(
ω(j)t+ ϕ(j)

)
= 0

(8)

Different ω corresponds to different oscillation. To have ψ(0, t) = ψ((N + 1)a, t) = 0 for all t,
the coefficient in front of different cos(ωt) terms must all be 0. This doesn’t mean that |α(j)| = 0
because for each ω, there are two corresponding wave vectors k and 2π

a − k. All we need to require
is that these two waves cancel each other at these two points. If we take out two such modes and
require them to cancel each other at x = 0,

|α(j)| cos
(
ω(j)t+ ϕ(j)

)
+ |α(2N+2−j)| cos

(
ω(j)t+ ϕ(2N+2−j)

)
= 0 (9)

This can be achieved if |α(j)| = |α(2N+2−j)| and ϕ(j) = ϕ(2N+2−j) + π. That is, the two oscilla-
tions have the same amplitude, the same frequency but a π phase difference and hence interfere
destructively.
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The form of the total wave coming from the two modes labeled by j and 2N + 2− j is then

|α(j)| cos
(
ω(j)t+ k(j)x+ ϕ(j)

)
+ |α(j)| cos

(
ω(j)t− k(j)x+ ϕ(j) + π

)
= |α(j)| sin(ω(j)t+ ϕ(j)) sin(k(j)x), j = 1, ..., N + 1

(10)

which is a standing wave.

Let’s see what each of the standing wave mode looks like. For j = 1, k(1) = 2π
(2N+2)a , and the wave

length of the standing wave (the spatial distance over which the wave pattern repeats itself) is
λ(1) = 2π

k(1)
= (2N + 2)a = 2L. The wavelength is twice as large as the original system! The system

can only accommodate half of the wave length. If we take snap shots of the wave, it looks like

Obviously this is the largest wavelength that can satisfy the fixed boundary condition at both ends.

With larger j and larger k, we can accommodate more wavelength in the system. With j = 2, we
have a full wavelength; with j = 3, we have one and a half of a full wave length... Finally, with
j = N + 1, we have k(N) = 2π

2a and λ = 2a, we get a standing wave with all the N points being on
the nodes so that nothing is moving. We can imagine having modes with even smaller wavelength
(for example, λ = a), but this is the same as the λ = 2a case as none of the N points move. In a
standing wave, the points that do not move are called nodes; the points with the largest oscillation
amplitude are called antinodes.

4.6 More Boundary Conditions

This way of solving systems with boundary conditions seems pretty complicated. But if we think
about it, what we did amounts to 1. embedding the original system into a larger translation
invariant system with constraints 2. make superpositions of degenerate traveling wave modes of
the larger system so that the new mode satisfy the constraint 3. reduce the solution back to the
original system. To make this process work, we need to determine: 1. what is the size of the
larger translation invariant system 2. how to make superposition of the traveling wave modes such
that it satisfies the constraints. The key to these questions is to figure out the wave length of the
traveling mode that fits with the boundary condition. Once the wave length is determined, we
make superposition of the two degenerate traveling waves with the same frequency but traveling in
opposite directions so that the constraints are satisfied.

4.6.1 Open boundary condition

Let’s try to use this method to find the eigenmodes in a system with open boundary conditions.
Consider the following coupled harmonic oscillator system with free ends.
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If we try to embed it into a larger translation invariant system, what constraint does the translation
invariant system have to satisfy? If we label the mass blocks in the original system as 1 through
N , then the constrain is such that

x0 = x1, xN = xN+1 (11)

because we can imagine there are virtual mass blocks 0 and N + 1, but as there is no force between
0 and 1, N and N + 1, the spring between them is neither compressed nor stretch and therefore 0
and 1, N and N + 1 have to have the same displacement.

It is not possible to have two neighboring points have the same displacement at all time in a
traveling wave, but it is possible in a standing wave. In a standing wave, if the two neighboring
points are on the two sides of an antinote – point with maximum oscillation amplitude (with equal
distance), they have the same displacement.

Therefore, in order to satisfy the constraint, we need to have a standing wave, with oscillation
maximum between 0 and 1 and between N and N +1. What are the wavelengths that can possibly
satisfy this? The total length between these two antinodes is Na. We can fit as little as half a
wavelength between them, which corresponds to a wavelength of 2Na.

More generally, the allowed wavelengths are

2Na,Na,
2

3
Na, ...,

2

n
Na, .... (12)

Having fixed the wavelength λn = 2
nNa, we take the corresponding two traveling wave modes and

make superpositions of them such that they form the desired standing wave mode.

ψ(n)(x, t) = |αn| cos
(
ω(n)t+ k(n)x+ ϕ(n)

)
+ |α(−n)| cos

(
ω(n)t− k(n)x+ ϕ(−n)

)
(13)

|αn|, |α(−n)|, ϕ(n) and ϕ(−n) need to be chosen such that d
dxψ(0, t) = d

dxψ(Na, t) = 0. It follows

that |αn| = |α(−n)|, ϕ(n) = ϕ(−n). Therefore,

ψ(n)(x, t) = 2|αn| cos
(
ω(n)t+ ϕ(n)

)
cos
(
k(n)x

)
(14)
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4.6.2 Driven boundary condition

We are going to deal with this case in the homework.

Demo 20608: Rubens’ Tube

Demos: Resonance and Normal Modes
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