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6 Reflection and Transmission

6.2 Transmission and reflection

6.2.2 Example 2

Now let’s consider a second example where the two string segments are connected in a different
way. The two strings are connected to a massless ring which is constrained to move vertically along
a rod.

Compared with the previous case, one difference is that the tension in the two string segments can
be different, depending on how much they are tightened, so it represents a more generic type of
boundary condition. Suppose the tensions are TL and TR respectively. If we send in a wave from
the left, what is the reflected and transmitted wave?

The total wave at x < 0 and x > 0 are still respectively{
ψL(x, t) = Aie

i(ωt−kLx) +Are
i(ωt+kLx)

ψR(x, t) = Ate
i(ωt−kRx)

(1)

At x = 0, we still have continuity of the string which means

ψL(0, t) = ψR(0, t) (2)

At the same time, the vertical part of the force should balance which leads to the condition

TL
∂ψL
∂x

(0, t) = TR
∂ψR
∂x

(0, t) (3)

From these two conditions we find

At
Ai

=
2TLkL

TLkL + TRkR
,
Ar
Ai

=
TLkL − TRkR
TLkL + TRkR

(4)

When TLkL = TRkR, there is no reflection. That is

TL
vL

=
TR
vR

(5)

As v =
√

T
ρ , this condition is equivalent to√

TLρL =
√
TRρR (6)
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or in other words
zL = zR (7)

So we have arrived at the same conclusion as in the previous case: there is no reflection when the
impedance on the two sides matches.

We can rewrite the relation between the amplitudes as

T =
At
Ai

=
2zL

zL + zR
, R =

Ar
Ai

=
zL − zR
zL + zR

(8)

which is of exactly the same form as in the previous example. When zL > zR, Ar is in phase with
Ai; when zL < zR, Ar is 180 degree out of phase with Ai.

6.2.3 Example 3

Now let’s consider a third example where a semi infinite string terminates at a massless ring that
is constrained to move vertically with friction constant γ. Nothing oscillates on the right hand side
of x = 0. But as we are going to see, to an observer on the left hand side of x = 0, it is as if there
were a string on the right hand side with impedance γ.

At x = 0, because the ring is massless, the total force acting on it should be zero. In particular, in
the vertical direction, the force from the string is balanced by the friction from the rod

T
∂ψ

∂x

∣∣∣
x=0

= −γ ∂ψ
∂t

∣∣∣
x=0

(9)

The total wave on the left hand side of x = 0 is

ψL(x, t) = Aie
i(ωt−kLx) +Are

i(ωt+kLx) (10)

The boundary condition at x = 0 tells us

TkL(Ar −Ai) = −γω(Ai +Ar) (11)

Therefore,

R =
Ar
Ai

=
TkL − γω
TkL + γω

(12)

In terms of reflection, a massless ring with friction is equivalent to a semi-infinite string with

TRkR = γω ⇒ γ =
TRkR
ω

=
TR
vR

=
√
TRρR = zR (13)

In fact, if we directly compute the impedance of the ring using the definition that impedance is the
ratio between force and velocity, we find

zR =

(
γ
∂ψ

∂t

)/∂ψ
∂t

= γ (14)

2



Therefore, this example shows that two systems generate the same reflection wave if they have
the same impedance, even though physically they look totally different. This has to be the case
because the interaction in the system is local. The only thing the left hand side knows about the
right hand side is how much motion is generated (∂ψ∂t ) by a certain force (T ∂ψ

∂x ). Therefore, two
systems with the same impedance look the same to the left hand side of the system.

Question: what if we send in a pulse, instead of a traveling wave? What is the relation between
the reflected pulse and the incident pulse?

6.2.4 Example 4

Consider a similar setup as in the previous example but with a massive ring (m) and no friction.
In this case, the force and velocity of the ring does not have a simple linear relation. Instead we
have

−T ∂ψ
∂x

∣∣∣
x=0

= m
∂2ψ

∂t2

∣∣∣
x=0

(15)

How does the reflected wave change? The total wave on the left hand side is again

ψL(x, t) = Aie
i(ωt−kLx) +Are

i(ωt+kLx) (16)

The boundary condition at x = 0 tells us

iTkL(Ai −Ar) = −mω2(Ai +Ar) (17)

Therefore,

R =
Ar
Ai

=
iTkL +mω2

iTkL −mω2
(18)

which is not a real number!

This simply means that the reflected wave is phase shifted relative to the input wave. The effective
impedance of the ring is

zR = imω (19)

which is 1. pure imaginary 2. ω dependent. In general, impedance can be complex and the
amplitude of reflection is always related to the amplitude of incoming wave as

Ar
Ai

=
zL − zR
zL + zR

(20)

What does a purely imaginary impedance mean for the power transfer in the system? When the
impedance is purely imaginary, the velocity of the ring and the force acting on it has a π/2 phase
shift. Therefore, on average, the ring does not absorb any power. All the power that comes from
the input wave gets reflected back.

6.3 Multiple Reflections

Consider the situation where three string segments are connected in series. Both the string density
and tension can change from one segment to another. If a wave is sent in from the left as Aie

i(ωt−k1x),
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part of it will get reflected at x = 0, part of it will get transmitted to x = L. The transmitted part
will be partly reflected at x = L and partly transmitted. The reflection at x = L will be partly
reflected at x = 0 again and partly transmitted, and so on and so forth...

This sounds like a complicated process, but what is the total wave that gets reflected or transmitted?
As we are going to see, to find that the calculation is not too complicated and the result is highly
useful because we will learn how to choose the segments to minimize or maximize transmission /
reflection.

Let’s write the wave in the left most segment as

ψ1(x, t) = Aie
i(ωt−k1x) +Are

i(ωt+k1x) (21)

The wave between x = 0 and x = L can be written as

ψ2(x, t) = ALe
i(ωt+k2x) +ARe

i(ωt−k2x) (22)

The wave to the right of x = L can be written as

ψ3(x, t) = Ate
i(ωt−k3x) (23)

From the boundary condition, we can determine the relation between Ai, Ar and At. The continuity
of the wave at x = 0 and x = L gives{

Ai +Ar = AL +AR

ALe
ik2L +ARe

−ik2L = Ate
−ik3L

(24)

Another boundary condition comes from the balance of force at x = 0 and x = L. In particular,
the vertical component of the forces coming from the strings should balance each other. We know
that the vertical component of the force is given by

F = z
∂ψ

∂t
(25)

Note that if the traveling wave generated is traveling to the left, we need a force that is equal in
amplitude but opposite in direction.

F = −z ∂ψ
∂t

(26)

With this, the balance of force at x = 0 and x = L gives{
z1(Ai −Ar) = z2(AR −AL)

z2(ARe
−ik2L −ALeik2L) = z3Ate

−ik3L
(27)

Combining these equations we find, after some algebra

Ar
Ai

=

(
z2 + z1 −

z2 + z3
z2 − z3

(z2 − z1)ei2k2L
)/(z2 + z3

z2 − z3
ei2k2L(z2 + z1)− (z2 − z1)

)
(28)
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This looks very complicated but let’s look at the special cases where z3 = z1, that is, the wave
passes through some intermediate medium (a think film or prism) in an otherwise uniform medium.
Let’s also restrict our attention to only the case where z1 and z2 are real. Then we get

Ar
Ai

=
(

(z2 + z2)(z2 − z1)(1− ei2k2L)
)/(

(z2 + z1)
2ei2k2L − (z2 − z1)2

)
(29)

Therefore, whenever 2k2L = 2πn (n is integer), Ar = 0. That is, the incoming wave does not get
reflected at all when the length of the intermediate region is

L =
nπ

k2
=

1

2
nλ2 (30)

How to understand this? Consider the sequential reflection process.

A3
t and A1

r are both part of the total reflection wave. If they have the same phase, they interfere
constructively with each other, giving rise to a large reflected wave; if they are out of phase with
each other, they interfere destructively and give rise to a small reflection wave. So what is the
relation between their phases? The phase difference between A1

r and A3
t comes from the following

sources:

(1) phase difference between A1
r and A1

t .

(2) propagation of the wave form x = 0 to x = L.

(3) phase difference between A1
t and A2

r .

(4) propagation of the wave from x = L back to x = 0.

When z1 and z2 are real, (1) and (3) add up to −1 while (2) and (4) add up to ei2k2L. Therefore,
whenever ei2k2L = 1, i.e. L = nπ

k2
, A3

t and A1
r are out of phase and interference destructively.
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