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6 Reflection and Transmission

6.3 Multiple Reflections

Last time we considered a multiple reflection situation and found that when z1 and z3 are equal

Ar
Ai

=
(

(z2 + z2)(z2 − z1)(1− ei2k2L)
)/(

(z2 + z1)
2ei2k2L − (z2 − z1)2

)
(1)

Therefore, whenever 2k2L = 2πn (n is integer), Ar = 0. That is, the incoming wave does not get
reflected at all when the length of the intermediate region is

L =
nπ

k2
=

1

2
nλ2 (2)

How to understand this? Consider the sequential reflection process.

A3
t and A1

r are both part of the total reflection wave. If they have the same phase, they interfere
constructively with each other, giving rise to a large reflected wave; if they are out of phase with
each other, they interfere destructively and give rise to a small reflected wave. So what is the
relation between their phases? The phase difference between A1

r and A3
t comes from the following

sources:

(1) phase difference between A1
r and A1

t .

(2) propagation of the wave form x = 0 to x = L.

(3) phase difference between A1
t and A2

r .

(4) propagation of the wave from x = L back to x = 0.

When z1 and z2 are real, (1) and (3) add up to −1 while (2) and (4) add up to ei2k2L. Therefore,
whenever ei2k2L = 1, i.e. L = nπ

k2
, A3

t and A1
r are out of phase and interference destructively.

Question: is it possible to have no transmission? Answer: not with finite z1 = z3 and z2.

Question: when z1 6= z3, can we choose z2 such that there is no reflection? Answer: yes! If we
choose z2 =

√
z1z3 and ei2k2L = −1, Ar = 0. (Non-reflective coating.)
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6.4 Non-perpendicular incident wave, refraction

Demo 20704: Refraction, Transmission, and Reflection with Tabletop Laser

Now consider the more complicated case of transverse wave on a two dimensional membrane.
Suppose that we have two such membranes in the xy plane with wave equations

∂2ψ

∂t2
= v21

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
,
∂2ψ

∂t2
= v22

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
(3)

respectively and they are connected along the x = 0 axis.

Plane wave of the form
ψ(x, t) = Aei(ωt−

~k·~x) (4)

can exist in both membranes. When the plane wave crosses the boundary at x = 0 from one
membrane to another, there can be reflection and the transmitted wave may not proceed in the
same direction as the incident wave. This is the phenomena of refraction and we are going to find
out below the direction of the reflected and transmitted wave.

Consider an incident wave of the form

ψi(~x, t) = Aie
i(ωt−~ki·~x) (5)

where ω = v1|~ki|. Suppose that the reflected wave and transmitted wave take the form

ψr(~x, t) = Are
i(ωt−~kr·~x), ψt(~x, t) = Ate

i(ωt−~kt·~x) (6)

where ω = v1|~kr| = v2|~kt|.

To satisfy continuity along the whole boundary of x = 0, we require that

ψi(0, y, t) + ψr(0, y, t) = ψt(0, y, t) (7)

That is
Aie
−ikyi y +Are

−ikyry = Ate
−ikyt y (8)

In order for this to be true for any y, we must have

kyi = kyr = kyt (9)
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and at the same time
Ai +Ar = At (10)

From this we can find the direction of the reflected and transmitted wave. Suppose that the wave
vector of the incident wave is ~ki = (kxi , k

y
i ). It makes an angle θi with the normal direction of the

interface

tan θi =
kxi
kyi

(11)

The wave vector of the reflected wave has the same magnitude ω/v1 and the same y direction
component. Therefore, kxr = −kxi .

tan θr =
|kxr |
kyr

= tan θi (12)

The wave vector of the transmitted wave has a different magnitude |~kt| = ω/v2. Therefore, θt
satisfies

sin θt =
kyt

|~kt|
=

kyi

|~ki|
v2
v1

= sin θi
v2
v1

(13)

That is
sin θi
v1

=
sin θt
v2

(14)

If v2 < v1, for a given θi, we can always find a θt that satisfies this condition. However, if v2 > v1,
this may not be the case. In particular if v2

v1
sin θi > 1, or equivalently

θi > θc = arcsin
v1
v2

(15)

then θt does not exist. What happens in this case is that the incident wave is completely reflected,
with no transmitted wave at all. This is the phenomena of total internal reflection. Total internal
reflection is very useful for keeping a wave propagating along a waveguide without leaking out of
the wave guide.

Demo: dispersion

7 Interference and Diffraction

In our discussion of multiple reflection, we have already seen a situation where the total (reflected)
wave is the sum of many components. The different components can have different phase shifts
between them, resulting in different amplitude for the total wave. If all the components are in
phase, then they interfere constructively, giving rise to a large total wave; if the components are
out of phase with each other, they interfere destructively, giving rise to a small total wave. In
general, this kind of phenomena is called interference. In this section, we are going to discuss how
interference can lead to different interference and diffraction patterns.
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7.1 Cylindrical and spherical wave

Recall that in 1D, to generate a wave that travels in the +x direction, we can drive the x = 0 point
to oscillate as Aeiωt. The wave generated is then Aei(ωt−kx). Similarly, in 2D and 3D, to generate
a plane wave that travels in the +x direction, we can drive the x = 0 line / plane to oscillate as
Aeiωt and the wave generated would be Aei(ωt−kx), where k = ω/v. More generally, we can drive
the x = 0 line / plane as Aei(ωt−kyy) / Aei(ωt−kyy−kzz). The wave generated is still a plane wave,

taking the form Aei(ωt−kxx−kyy) / Aei(ωt−kxx−kyy−kzz), where kx =
√
k2 − k2y / kx =

√
k2 − k2y − k2z ,

k = ω/v. At a particular t, if we collect all the points with the same phase, we get parallel planes
with distance λ = 2π

k between them. Such planes are called wavefronts in the plane wave.

What if we drive only one point x = 0, y = 0, (z = 0) as Aeiωt? What kind of wave is generated?

In 2D, if we drive x = 0, y = 0 as Aeiωt, a cylindrical wave is generated which takes the form

ψ(~x, t) =
A√
r
ei(ωt−kr) (16)

where r =
√
x2 + y2. The wavefront are circles with distance λ = 2π

k between them.

In 3D, if we drive x = 0, y = 0, z = 0 as Aeiωt, a spherical wave is generated which takes the form

ψ(~x, t) =
A

r
ei(ωt−kr) (17)

where r =
√
x2 + y2 + z2. The wavefronts are spheres with distance λ between them.

The 1√
r

and 1
r scaling of the amplitude is to satisfy energy conservation: the energy flux (energy

flow per unit time and unit area) is proportional to amplitude squared in a wave. The surface area
across which energy flows scales as r in 2D and r2 in 3D. Therefore, to ensure energy conservation,
the amplitude scales as 1√

r
in 2D and 1

r in 3D.
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