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8 Polarization

Recall that in a light wave, there are six oscillating degrees of freedom: Ex, Ey, Ez, Bx, By, Bz, so
it is much more complicated than the other ‘scalar’ waves (only one degree of freedom) that we
have been talking about. In order to give a full description of the wave, we need to specify how
each of the components oscillate. In a plane wave propagating in the z direction, the Ez and Bz
components are zero – the EM field is transversal. Moreover, the transverse B field is determined
by the transverse E field. Therefore, in order to completely describe this plane wave, we only need
to specify the E field in the xy plane.

~E(x, y, z, t) = (Exx̂+ Eyŷ) ei(ωt−kz) (1)

This freedom in Ex and Ey is called polarization.

8.1 Linear polarization

If Ex and Ey are in phase with each other, the light wave is linearly polarized. There can be
different situations. If Ex = 0, the wave is linearly polarized in the y direction.

~E(z, t) = |Ey|eiφŷei(ωt−kz) (2)

If we take the real part of this expression and find the physical electric field, we find

~ER(z, t) = |Ey|ŷ cos(ωt− kz + φ) (3)

The electric field points only in the y direction and oscillates with space and time.

If Ey = 0, the wave is linearly polarized in the x direction.

~E(z, t) = |Ex|eiφx̂ei(ωt−kz) (4)

If we take the real part of this expression and find the physical electric field, we find

~ER(z, t) = |Ex|x̂ cos(ωt− kz + φ) (5)

The electric field points only in the x direction and oscillates with space and time.

More generally, the wave can be polarized along any direction in the xy plane.

~E(z, t) = |E|eiφ (cos θx̂+ sin θŷ) ei(ωt−kz) (6)

If we take the real part of this expression and find the physical electric field, we find

~ER(z, t) = |E| (cos θx̂+ sin θŷ) cos(ωt− kz + φ) (7)

The electric field points only in the (cos θx̂+ sin θŷ) direction and oscillates with space and time.
All linearly polarized wave propagating in the z direction can be written in this way. That is, any
linearly polarized wave in the xy plane can be decomposed into a linearly polarized wave in the x
direction and one in the y direction and the components have the same phase φ.

What if they have different phases?
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8.2 Circular polarization

Let’s consider the combination of linearly polarized wave in x, y directions with the same amplitude
but a phase difference of π/2.

~E(z, t) =
(
|E|x̂+ |E|e−iπ/2ŷ

)
ei(ωt−kz) (8)

How does every point on the wave move?

At z = 0, ~E(0, t) =
(
|E|x̂+ |E|e−iπ/2ŷ

)
ei(ωt). Of course, to find out the real electric field, we need

to take the real part of this expression, which becomes

~ER(0, t) = |E| (cos(ωt)x̂+ sin(ωt)ŷ) (9)

That is, the electric field at z = 0 is rotating in a circle.

The electric field at all the other spatial locations in the wave also move in circles, but with a phase
difference kz. If we look into the ray from the +ẑ direction, at every spatial point, the electric field
rotates in the counter-clockwise direction. If we take a snapshot of electric field along the z axis at
a particular time, the electric field vectors form a spiral. This is called ‘left-circular polarization’.

On the other hand, if
~E(z, t) =

(
|E|x̂+ |E|eiπ/2ŷ

)
ei(ωt−kz) (10)

At every point, the electric field rotates in the clockwise direction. This is called ‘right-circular
polarization’.
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8.3 Elliptical polarization

In general, the Ex and Ey components can have different amplitudes and arbitrary phase difference.

~E(z, t) =
(
|Ex|eiφx x̂+ |Ey|eiφy ŷ

)
ei(ωt−kz) (11)

At z = 0,
~E(0, t) =

(
|Ex|eiφx x̂+ |Ey|eiφy ŷ

)
eiωt (12)

If we take the real part it becomes

~ER(0, t) = |Ex| cos(ωt+ φx)x̂+ |Ey| cos(ωt+ φy)ŷ (13)

If we track the trajectory of the ~ER vector in the xy plane, it traces out an oval shape. In fact, at

every z point in the wave, the electric field traces out the same oval shape, but with a phase shift
from one point to another.

8.4 Unpolarized wave

A monochromatic plane wave is always polarized. That is, for a plane wave with a single frequency

~E(z, t) = (Exx̂+ Eyŷ)ei(ωt−kz) (14)

At every point in space, the x component of the electric field is oscillating with frequency ω and so
is the y component. These two components have a fixed phase difference. Such waves are said to
be coherent.

However, in reality, waves always have a finite distribution over frequency.

~E(z, t) =

ˆ
dω (Ex(ω)x̂+ Ey(ω)ŷ) ei(ωt−kz) (15)

For a generic choice of Ex(ω) and Ey(ω), the polarization of the wave will change from time to
time and the wave is incoherent.

Consider the example of a wave composed of four components with frequencies ω1 ≈ ω2 ≈ ω3 ≈ ω4.
Suppose that the four components are all linearly polarized: 1,2 in x direction and 3,4 in y direction.
They have the same amplitude but different phases.

Ex = Aeiφ1ei(ω1t−k1z) +Aeiφ2ei(ω2t−k2z), Ey = Aeiφ3ei(ω3t−k3z) +Aeiφ4ei(ω4t−k4z) (16)

At z = 0, taking the real part of the expression we get

ERx (0, t) = 2A cos(ω̄1t− φ̄1) cos(∆ω1t−∆φ1), ERy (0, t) = 2A cos(ω̄2t− φ̄2) cos(∆ω2t−∆φ2) (17)

3



where ω̄1 = (ω1 + ω2)/2, ∆ω1 = (ω1 − ω2)/2, ω̄2 = (ω3 + ω4)/2, ∆ω2 = (ω3 − ω4)/2.

ERx (0, t) and ERy (0, t) can be thought of as two beats. On a time scale t << 1
∆ω , ERx and ERy

oscillates with roughly the same frequency, fixed amplitude and their phase difference remains
roughly constant. Therefore, over a short period of time, the wave is coherent. However, when
we look at the wave over a longer period of time, the frequency of the two oscillations differ, their
amplitude changes, and their phase difference changes. The total ~E vector will wander around in
the xy plane, can point in any direction, and the wave becomes incoherent. 1

∆ω is hence called the
coherence time of the wave.

8.5 Polarizer and Wave Plate

A polarizer allows waves polarized in a particular direction to pass but absorbs waves polarized
in the perpendicular direction. The direction that wave can pass is called the easy axis of the
polarizer.

If we denote the polarized light as a two dimensional vector

(
Ex
Ey

)
, the polarizer acts as a projector

P . If the easy axis is along the x direction, Px =

(
1 0
0 0

)
. If the easy axis is along the y direction,

Py =

(
0 0
0 1

)
. If the easy axis is along a general direction that makes an angle θ with the x axis,

Pθ = RθPxR−θ =

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
(18)

where Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. We can verify that as a projector PθPθ = Pθ. That is, repeated

application of the same polarizer has the effect of just one of them.

A wave plate can change the relative phase of the two polarization components. That is, if we send
in a linearly polarized light, we can get a circularly / elliptically polarized light at the output. This

is possible because the refraction index (speed of light in vacuum divided by the speed of light in
the medium) is different for the two linearly polarized components. Suppose that the refraction
indices are nx and ny respectively, then the phase difference induced by a wave plate of thickness
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L is

∆φ = kxL− kyL = Lω
nx − ny

c
(19)

In matrix form, the effect of the wave plate can be written as

Q =

(
1 0
0 ei∆φ

)
(20)

(what if we rotate the wave plate by an angle θ around the z axis?)

Putting a wave plate between two polarizers, we can generate polarized colored light from unpo-
larized white light.

If there is no wave plate in between, then because the two polarizers are orthogonal to each other,
no light can pass through. Now with the wave plate, after the first polarizer, the light vector is (1, 1)
in the xy plane. After the wave plate, it becomes (1, ei∆φ), where ∆φ is generally ω dependent.
When ∆φ = 0, no light passes through the second polarizer. When ∆φ = π, the light can pass
through. In between , the light is partially transmitted. Therefore, the output light has color and
each wavelength component is linearly polarized.

The combined effect of the polarizers and the wave plate can be found by multiplying their corre-
sponding matrices

P−π/4QPπ/4 =
1

2

(
1 −1
−1 1

)(
1 0
0 ei∆φ

)
1

2

(
1 1
1 1

)
=

1

4

(
1− ei∆φ 1− ei∆φ
−1 + ei∆φ −1 + ei∆φ

)
(21)

A polarized plane wave, described by a two dimensional complex vector, provides one possible
realization of a quantum bit (qubit). The polarizer and wave plate apply linear transformations in
the vector space and can be used to manipulate the quantum information stored to realize quantum
communication and quantum computation protocols.

Demo: Polarized light
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